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Consider a function f : [0, 1] → [0,∞).

Definition. We say f is doubling if there exists
a doubling constant C < ∞ such thatˆ

I1

f dx ≤ C

ˆ
I2

f dx (1)

for all intervals I1, I2 that are adjacent and of
equal length. Motivation. Doubling prevents f
from changing too much on all scales.

Definition. We say f is n-adic doubling if I1, I2
are restricted to n-adic siblings.

Definition. Let n ≥ 2. An n-adic interval I
takes form

I = [
k − 1

nm
k

nm
) for m, k ∈ Z (2)

Each n-adic interval (parent) can be partitioned
into n consecutive n-adic intervals (children) of
equal length. These n intervals are siblings
relative to each other.
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Figure: Triadic intervals

Question. Can f be n-adic doubling for all n,
but not doubling? That is, intuitively can f be
well-behaved on all n-adic intervals but overall
poorly-behaved?

Lemma (ABMPZ)
Let N ∈ N, ϵ > 0. Then, there exists infinitely
many x ∈ N such that∣∣∣∣∣ 12x − 1

n
[xlogn2]
i

∣∣∣∣∣ < ϵ

2x
for 3 ≤ n ≤ N . (3)

Theorem (APRY)
Let Cn > 1 be unbounded. There exists infinitely many f that are n-adic
doubling with n-adic constant at most Cn for each n ≥ 2, but not doubling.

Claim. Start with f ≡ 1, perform a reweighting procedure for α steps with
κ > 1. Then, f ’s doubling constant is at least κα. However, f is n-adic
doubling with constant at most 1.01κ3(2n)log2 κ for n ≤ N .
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Figure: Three step reweighting procedure, κ = 13/7, Z = 1
2x , Y = 1
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Sketch. Reweighting preserves ∥f ∥L1. n-adic intervals larger than Y will not
see reweighting. n-adic intervals smaller than Y will not cross Y and can only
see at most ∼ log2(2n) many reweightings.

Claim. We perform infinitely many reweighting procedures while increasing N ,
α. Then, we can make C = ∞ while keeping Cn ≤ 1.01κ3(2n)log2 κ for all
n ∈ N. If we also decrease κ, then we can make Cn any increasing, unbounded
function.

Figure: Infinitely many reweighting, qualitatively

Definition. We say that f satisfies a reverse
Holder inequality, or f ∈ RHp, if there exists
1 < p < ∞,C ≥ 1 such that

ˆ
I

|f |p dx ≤ C

(ˆ
I

|f | dx
)p

(4)

for all intervals I . We say f ∈ RHp
n if we restrict

I to n-adic intervals.
Definition. We say f is of bounded mean
oscillation, or f ∈ BMO if

∥f ∥BMO := sup
I

 
I

|f −
 
I

f | < ∞ (5)

Motivation. Like doubling, these conditions
provide regularity for a function f .

It is known that if f ∈ RHp
n for some

1 < p < ∞, then log |f | ∈ BMOn. But if f is
not doubling, then log |f | /∈ BMO.

Claim. The previous f also satisfies a reverse
Holder inequality for n-adic intervals.

Sketch. For intervals within a reweighting
interval, we estimate a geometric series. For
intervals crossing multiple reweighting, we need
to glue the reverse Holder constants together.

Theorem (APRY)
The following holds:

⋂
n≥2RH

p
n ⊊ RHp for all

1 ≤ p < ∞ and
⋂

n≥2BMOn ⊊ BMO.

By duality we also have similar results for to the
Hardy space H1 and the space of vanishing mean
oscillation VMO.
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