Infinite Intersections of Doubling Measures, Weights, and Function Classes

Consider a function £ : [0,1] — [0, 00).
Definition. We say f is doubling if there exists
a doubling constant C < oo such that
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for all intervals /1, |, that are adjacent and of
equal length. Motivation. Doubling prevents f
from changing too much on all scales.

Definition. We say f is n-adic doubling if /, )
are restricted to n-adic siblings.

Definition. Let n > 2. An n-adic interval /
takes form
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) for m, k € 7 (2)

Each n-adic interval (parent) can be partitioned
into n consecutive n-adic intervals (children) of
equal length. These n intervals are siblings
relative to each other.

Figure: Triadic intervals

Question. Can f be n-adic doubling for all n,
but not doubling? That is, intuitively can f be
well-behaved on all n-adic intervals but overall
poorly-behaved?

Lemma (ABMPZ)

Let N € N, e > 0. Then, there exists infinitely
many x € N such that
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Theorem (APRY)
Let C, > 1 be unbounded. There exists infinitely many f that are n-adic

doubling with n-adic constant at most C, for each n > 2, but not doubling.

Claim. Start with f = 1, perform a reweighting procedure for o steps with
x > 1. Then, f's doubling constant is at least k“. However, f is n-adic
doubling with constant at most 1.01x%(2n)"%8&" for n < N.
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Figure: Three step reweighting procedure, kK = 13/7, Z = 2—1X Y =

Sketch. Reweighting preserves ||f||;1. n-adic intervals larger than Y will not
see reweighting. n-adic intervals smaller than Y will not cross Y and can only

see at most ~ log,(2n) many reweightings.

Claim. We perform infinitely many reweighting procedures while increasing N,

. Then, we can make C = oo while keeping C, < 1.01x3(2n)"&* for all

n € N. If we also decrease x, then we can make C, any increasing, unbounded

function.
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Figure: Infinitely many reweighting, qualitatively

Definition. We say that f satisfies a reverse
Holder inequality, or f € RHP, if there exists
1 < p < oo, C>1such that
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for all intervals /. We say f € RHP if we restrict
| to n-adic intervals.

Definition. We say f is of bounded mean
oscillation, or f € BMO if
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Motivation. Like doubling, these conditions
provide regularity for a function f.

It is known that if f € RHP for some
1 < p < o0, then log |f| € BMO,. But if f is
not doubling, then log |f| ¢ BMO.

Claim. The previous f also satisfies a reverse
Holder inequality for n-adic intervals.

Sketch. For intervals within a reweighting
interval, we estimate a geometric series. For
intervals crossing multiple reweighting, we need
to glue the reverse Holder constants together.

Theorem (APRY)

The following holds: (., RH? C RHP for all
1< p<ooand(),., BMO, C BMO.

By duality we also have similar results for to the
Hardy space H! and the space of vanishing mean

oscillation VMO.
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