Infinite Intersections of Doubling Measures, Weights, and Function Classes

Consider a function $f : [0, 1] \rightarrow [0, \infty)$. *Definition.* We say *f* is **doubling** if there exists a doubling constant $C < \infty$ such that

$$\int_{I_1} f \, dx \le C \int_{I_2} f \, dx \tag{1}$$

for all intervals I_1, I_2 that are adjacent and of equal length. *Motivation*. Doubling prevents f from changing too much on all scales.

Definition. We say f is n-adic doubling if I_1, I_2 are restricted to *n*-adic siblings.

Definition. Let n > 2. An *n*-adic interval / takes form

$$I = \left[\frac{k-1}{n^m} \frac{k}{n^m}\right) \text{ for } m, k \in \mathbb{Z}$$
 (2)

Each *n*-adic interval (parent) can be partitioned into *n* consecutive *n*-adic intervals (children) of equal length. These *n* intervals are siblings relative to each other.

	 +	-	-	+	+	 -		+	 -	-	-	-	-	-				 		 I		
0						$1_{/}$	/3	3						2,	/3)						[

Figure: Triadic intervals

Question. Can f be *n*-adic doubling for all n, but not doubling? That is, intuitively can f be well-behaved on all *n*-adic intervals but overall poorly-behaved?

Lemma (ABMPZ)

Let $N \in \mathbb{N}$, $\epsilon > 0$. Then, there exists infinitely many $x \in \mathbb{N}$ such that

$$\left|\frac{1}{2^{x}}-\frac{1}{n_{i}^{[x\log_{n}2]}}\right| < \frac{\epsilon}{2^{x}} \text{ for } 3 \le n \le N. \quad (3)$$

Sketch. Reweighting preserves $||f||_{L^1}$. *n*-adic intervals larger than Y will not see reweighting. *n*-adic intervals smaller than Y will not cross Y and can only see at most $\sim \log_2(2n)$ many reweightings.

Theresa C. Anderson^{*}, David Phillips[†], Anastasiia Rudenko[†], Kevin You^{*} *Carnegie Mellon University, [†]University of Pittsburgh

Theorem (APRY)

Let $C_n > 1$ be unbounded. There exists infinitely many f that are n-adic doubling with n-adic constant at most C_n for each $n \ge 2$, but not doubling.

Claim. Start with $f \equiv 1$, perform a reweighting procedure for α steps with $\kappa > 1$. Then, f's doubling constant is at least κ^{α} . However, f is n-adic doubling with constant at most $1.01\kappa^3(2n)^{\log_2\kappa}$ for $n \leq N$.

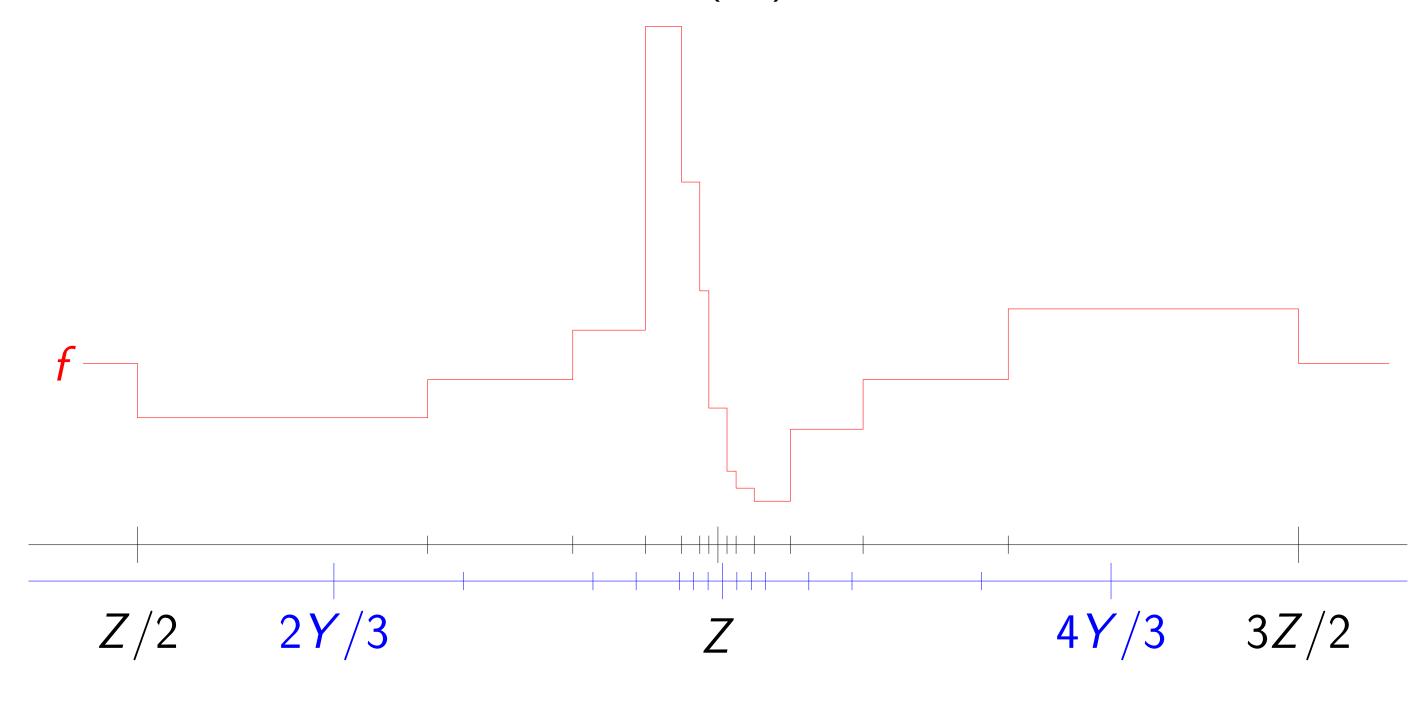


Figure: Three step reweighting procedure, $\kappa = 13/7$, $Z = \frac{1}{2^{x}}$, $Y = \frac{1}{3[x \log_{3} 2]}$.

Claim. We perform infinitely many reweighting procedures while increasing N, α . Then, we can make $C = \infty$ while keeping $C_n \leq 1.01 \kappa^3 (2n)^{\log_2 \kappa}$ for all $n \in \mathbb{N}$. If we also decrease κ , then we can make C_n any increasing, unbounded function.

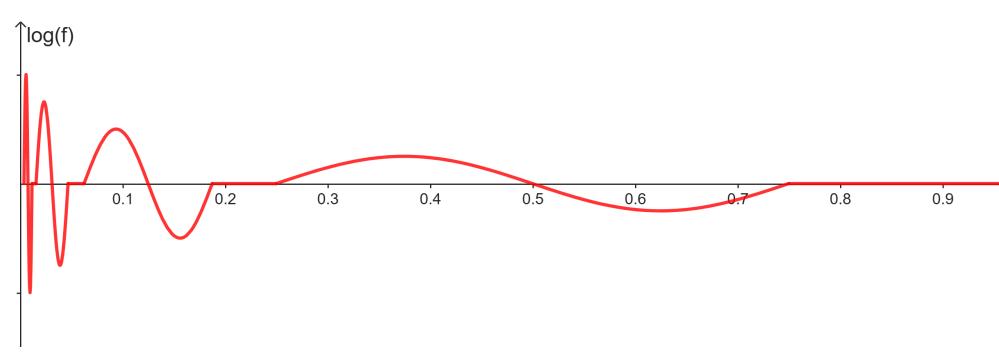


Figure: Infinitely many reweighting, qualitatively

Definition. We say that f satisfies a reverse **Holder** inequality, or $f \in RH^p$, if there exists 1 such that

$$\int_{I} |f|^{p} dx \leq C \left(\int_{I} |f| dx \right)^{p}$$

for all intervals *I*. We say $f \in RH_n^p$ if we restrict *I* to n-adic intervals.

Definition. We say f is of **bounded mean oscillation**, or $f \in BMO$ if

$$\|f\|_{BMO} := \sup_{I} \int_{I} |f - \int_{I} f| < \infty$$

Motivation. Like doubling, these conditions provide regularity for a function f.

It is known that if $f \in RH_n^p$ for some $1 , then <math>\log |f| \in BMO_n$. But if f is not doubling, then $\log |f| \notin BMO$.

Claim. The previous *f* also satisfies a reverse Holder inequality for *n*-adic intervals.

Sketch. For intervals within a reweighting interval, we estimate a geometric series. For intervals crossing multiple reweighting, we need to glue the reverse Holder constants together.

Theorem (APRY)

The following holds: $\bigcap_{n\geq 2} RH_n^p \subsetneq RH^p$ for all $1 \leq p < \infty$ and $\bigcap_{n \geq 2} B\overline{MO}_n \subsetneq BMO$.

By duality we also have similar results for to the Hardy space H^1 and the space of vanishing mean oscillation VMO.

- T.C. Anderson, E. Bellah, Z. Markman, T. Pollard and J. Zeitlin. Arbitrary finite intersections of doubling measures and applications. To appear in Journal of Functional Analysis.
- D.M Boylan, S.J. Mills, and L.A. Ward. Construction of an exotic measure: dyadic doubling and triadic doubling does not imply doubling. J. Math. Anal. Appl. 476 (2019), no. 2, 241–277.

