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Preface

This handouts organizes notable thoughts into “ideas”, which are more general then theorems.
They may illustrate particular geometric configurations, constructions, or ways of thinking.

Note that solutions to examples are not contained in the main text portion, in hopes that
you first attempt the examples by yourself. After which, it is also strongly recommended that
you read through all solutions, since this is where application of ideas are shown. (Basically,
what are usually in the main text of math books - working through examples - are moved to the
solution pages)

To draw connections between geometric ideas, many examples and problems will depend on
results from previous examples. Therefore, the handout should be worked on in order. It is
okay to not have fully solved all problems: understanding the problem after seeing hints or the
solution is also beneficial.

Finally, for this handout no advanced techniques will be used. It will not be too rigorous
with proofs. Solutions are written so that the reader may understand the underlying geometry
ideas.

This handout should be considered as a work in progress. Please contact me regarding errors,
clarifications, or comments of this handout.

Have fun doing geometry!
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1 Isosceles Triangles

The most basic property in geometry is congruence ∼=, which births congruent segments
and congruent angles. With only congruence and angle addition, we are able to attempt many
problems broadly known under the category of angle chasing.

We begin by analyzing the simplest of such figures, the isosceles triangle, and end with
figures containing multiple isosceles triangles, such as the equilateral triangle and the cyclic
quadrilateral.

This chapter serves as an introduction for identifying congruent segments/angles and con-
structing supplemental figures involving congruent triangles to complete problems.

Triangle Congruence

A

B C

Figure 1: An isosceles triangle

Idea 1 (Pons asinorum). Given 3 non-collinear points A,B,C, AB = AC if and only if
̸ ABC = ̸ ACB.

Of course, this statement seems to be obviously true by symmetry. However, we also need to
make sure that the configuration is well-defined, which comes from the SAS triangle congruence
condition. We know that AB = AC, AC = AB, and ̸ BAC = ̸ CAB, from which △BAC ∼=
△CAB follows. Thus, ̸ ABC = ̸ ACB. Similarly, we may use AAS congruence for proving the
opposite direction.

Remark 1.1. In geometry, we have two notable definition/properties that we generally take as a
postulate. The first one is that corresponding angles formed by a transversal cutting two parallel
lines are congruent. The second is triangle congruence conditions.

Recall the triangle congruence conditions, abbreviated as SSS, SAS, ASA, AAS, and HL,
referring to congruent corresponding parts.

Triangle congruence alone is a powerful tool to prove existences.

Example 1.1. (Existence of Circumcenter and Incenter) Show that the three perpendicular
bisectors of a triangle concur at one point. Similarly, show that the three angle bisectors of a
triangle concur at one point.
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Isosceles Triangles

With the basic definition of the isosceles triangle, along with angle measurements, we may
solve many introductory geometry problems.

Example 1.2. (2007 AMC 12A) Triangles ABC and ADC are isosceles with AB = BC and
AD = DC. Point D is inside triangle ABC, angle ABC measures 40 degrees, and angle ADC
measures 140 degrees. What is the degree measure of BAD?

For the next two examples, we can’t simply add and subtract from known angles. Instead,
we will need to use algebra.

Idea 2 (Algebra). Problem solving is very much a backwards strategy. Setting up variables and
equations is a powerful method to demand results satisfying certain properties.

It is recommended, especially for this chapter, for you to draw large diagrams and label all
known angles with measurements and add variables as necessary. This way, you can easily keep
track of what you know, and also observe nice relations between angles.

Example 1.3. (1994 AHSME) In triangle ABC, AB = AC. If there is a point P strictly
between A and B such that AP = PC = CB, then ̸ A =?

B C

A

P

Figure 2: Example 1.3

Example 1.4. In triangle ABC, point D is on AC such that AB = AD. Suppose that ̸ ACB−
̸ ABC = 30◦. Find ̸ CBD.

By now, the only other facts we used are the sum of interior angles of a triangle is 180◦ and
the angle addition postulate.

Remark 1.2. At this point, tools introduced in the standard high school geometry class like
vertical angles, exterior angles, and sum of interior angles in a triangle all boil down to the
same idea that the “angle” of a straight line is 180 degrees. (Make sure you see why!) Thus, we
wouldn’t be explicitly referencing these results.

However, many problems can not be solved so directly. Consider taking a peak at Example
1.9 and Example 1.11. Try to label all known angles. You will find that there is a region in
each diagram missing pairs of angles, for which we can only find the sum of the two measures.

While we are given familiar conditions, such as congruent segments in Example 1.9 and
congruent angles in Example 1.11, we don’t see any isosceles triangles. The trick is that both
problems have 3 hidden isosceles triangles, and it is our goal to be able to find them.
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Angle Chasing

Idea 3 (Construction I). Constructing congruent triangles with different locations/orientations
is a very powerful technique to manipulate congruent segments so that they form meaningful
isosceles triangles.

This is an overarching idea in this section. To construct new triangles, we can think forward
with planar transformations like reflections and rotations. Alternatively, we can think backwards
and draw triangles out of the congruent segments and then demand the triangles to be congruent.

We will begin illustrating this idea with very specific configurations.

Idea 4 (Utilize Symmetry). When we have highly symmetric figures like squares or equilateral
triangles, a good idea is to rotate or reflect the figure and seeing what happens to newly connected
components.

In the next two examples, by rotating/reflecting the squares or triangles we can connect some
segments/angles and also create 60◦ angles.

Idea 5 (60◦ Angles). Be aware of 60◦ angles. They are the only special angle in angle chasing,
and allow for more isosceles triangles to be formed.

Example 1.5. In equilateral triangle ABC there is a point P such that AP = 2BP and
̸ APB = 120◦. Find the measure of ̸ CPA. Hint: 73

B C

A

P

120◦

Figure 3: Example 1.5

Example 1.6. Given square ABCD and point E inside the square such that ̸ EDC = ̸ ECD =
15◦, prove that △AEB is equilateral. Hint: 68

Idea 6 (Reflection in Isosceles Triangles). In an isosceles triangle, if there are asymmetrical
configurations, reflecting part of the configuration over the line of symmetry of the isosceles
triangle can yield new observations.

This is similar to the previous idea, but here we utilize the inherent symmetry of the isosceles
triangle.

Example 1.7. In square ABCD, M is the midpoint of BC. The line through M perpendicular
to AM meets CD at N . Show that ̸ BAM = ̸ NAM .
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Example 1.8. (PUMaC 2013) Given triangle ABC and point P inside it, ̸ BAP = 18◦,
̸ CAP = 30◦, ̸ ACP = 48◦, and AP = BC. If ̸ BCP = x◦, find x. Hint: 20

Now, we will examine scenarios with multiple isosceles triangles, beginning with a beautiful
example of multiple congruent segments.

Example 1.9. (2008 AMC 10B) Quadrilateral ABCD has AB = BC = CD, ̸ ABC = 70◦ and
̸ BCD = 170◦. What is the measure of angle BAD?

Cyclic Quadrilaterals

It turns out that in the last example, we actually have four equivalent segments, which the
forth was created by a 60◦ angle. This new equal side can then come back and form more
isosceles triangles with the previous two sides. This suggests that congruence ∼= is powerful
because it is transitive.

Next, we will examine another configuration with four congruent segments, except that they
all share a vertex.

B

A

C

D

Figure 4: Example 1.10

Example 1.10. Let A,B,C,D,O be points such that ABCD is a convex quadrilateral and
AO = BO = CO = DO. Show that ̸ ABD = ̸ ACD and ̸ ABC + ̸ ADC = 180◦.

Remarkably, after using 3 isosceles triangles to obtain angle conditions, we arrive with the
conclusion that two angles with sides not containing O are congruent. This configuration is a
lot more useful than the previous, because we are no longer limited to 60◦ angle or isosceles
triangles. However, there are still isosceles triangles hiding in the background.

We formally state it as follows:

Idea 7 (Cyclic Quadrilaterals). Given convex quadrilateral ABCD, the following conditions are
equivalent:

• ABCD is cyclic

• ̸ ABD = ̸ ACD

• ̸ ABC + ̸ ADC = 180◦

6
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B

A

C

D

B

A

C

D

Figure 5: Congruent angles and supplementary angles in a cyclic quadrilateral

This is very useful when there are two arbitrary congruent angles that “cross”. Keep in mind
that the later two conditions can be written in different variables. Hence, we may do something
like ̸ ABD = ̸ ACD ⇐⇒ ̸ ADB = ̸ ACD, to “switch” the congruent angle condition over to
another pair of angles.

From this equivalence relation, we may also assign angle measurements to arcs, and the above
conditions are the same as

• Each arc on a circle has an angle measurement, and angle/arc addition applies normally.

• The total angle measurement of the circle is 360◦.

• Inscribed angles of a circle have measure half that of the arc angle measure.

which are the standard facts of a circle introduced in geometry class. However, often times the
circle/center are not drawn, and it is better to think in terms of the quadrilateral (Idea 1).

Remark 1.3. There is a special case worth noting: Let points A,B,C be on circle ω, if AB is
a diameter, then ̸ ACB = 90◦ for any C. The converse is also true. This is known as Thales’s
theorem.

With our new tools, we can tackle a series of new problems.

Example 1.11. Convex quadrilateral ABCD satisfies AC ⊥ BD, ̸ ABD = ̸ ACD = 65◦, and
̸ ADB = 80◦. Find the measure of ̸ ACB.

Example 1.12. (2015 PUMaC) Cyclic Quadrilateral ABCD satisfies ̸ ADC = 2· ̸ BAD = 80◦

and BC = CD. Let the angle bisector of ̸ BCD met AD at P . What is the measure, in degrees,
of ̸ BPD?

Cyclic quadrilaterals are indeed so powerful that they will continue to pop up in our study of
geometry. Specifically for this handout, we will go into more detail of angle chasing and cyclic
quadrilaterals in chapters 2 and 5.
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Problems

Problem 1.1. (2014 HMMT) In quadrilateral ABCD, ̸ DAC = 98◦, ̸ DBC = 82◦, ̸ BCD =
70◦, and BC = AD. Find ̸ ACD.

D C

B
A

82◦

98◦

Problem 1.2. (Van Schooten’s Theorem) Given circle ω and inscribed equilateral △ABC, on
minor arc AB an arbitrary point P is chosen. Prove that AP +BP = CP . Hint: 75

Problem 1.3. (2003 AIME I) Triangle ABC is isosceles with AC = BCC and ACB = 106◦.
Point M is in the interior of the triangle so that ̸ MAC = 7◦ and ̸ MCA = 23◦. Find the
number of degrees in ̸ CMB. Hint: 13

Problem 1.4. (2016 CMIMC) Suppose ABCD is a convex quadrilateral satisfying AB =
BC,AC = BD, ̸ ABD = 80◦, and ̸ CBD = 20◦. What is ̸ BCD in degrees?

Problem 1.5. (2001 AMC 12) In△ABC, ̸ ABC = 45◦. PointD is on BC so that 2·BD = CD
and ̸ DAB = 15◦. Find ̸ ACB. Hint: 8

Problem 1.6. (2017 CMIMC) Cyclic quadrilateral ABCD satisfies ̸ ABD = 70◦, ̸ ADB =
50◦, and BC = CD. Suppose AB intersects CD at point P , while AD intersects BC at point
Q. Compute ̸ APQ− ̸ AQP . Hint: 32 22

Problem 1.7. (2017 IMO Shorlist) Let ABCDE be a convex pentagon such that AB = BC =
CD, ̸ EAB = ̸ BCD, and ̸ EDC = ̸ CBA. Prove that the perpendicular line from E to BC
and the line segments AC and BD are concurrent. Hint: 36 4

Problem 1.8. (Langley’s Adventitious Angles) Triangle ABC is isosceles with AC = BC and
̸ C = 20◦. D,E are on AC,BC, respectively, such that ̸ ABD = 60◦ and ̸ BAE = 50◦. Find
the measure of ̸ EDB. Hint: 56 29

8
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2 Similar Triangles - Part I

Similarity is a powerful notation in geometry to relate arbitrary lengths. In this chapter, we
will study similar triangles, and examine the technique of constructing parallel lines. We will
also cover useful results like the Angle Bisector’s Theorem, Ptolemy’s Theorem, and Stewart’s
Theorem.

This chapter serves as an introduction for identifying similar triangles and constructing par-
allel lines to complete problems.

Proportionality

What are lengths of segments? Unfortunately, we only have introduced the notation of
congruence segments, and while we may add segments up to obtain integer multiples, our options
are limited. To deal with the general relation between lengths, we introduce the idea of scaling
and similarity.

Idea 8 (Similarity). Given two triangles △ABC and △XY Z, the following conditions are equiv-
alent.

• The two triangles △ABC and △XY Z are similar.

• (AA) Two of the corresponding angles are congruent - that is, ̸ ABC = ̸ XY Z and
̸ ACB = ̸ XZY .

• (SSS) Three of the corresponding segments are in equal proportion - that is,

AB

XY
=

BC

Y Z
=

CA

ZX
.

• (SAS) Two of the corresponding segments are in equal proportion and the formed angle is
congruent - that is,

AB

XY
=

BC

Y Z
and ̸ ABC = ̸ XY Z.

We write △ABC ∼ △XY Z.

A

B

C

X

Y Z

Figure 6: Similar triangles △ABC and △XY Z

Now, with the addition of ratios, we are able to solve for many more segment lengths. Beware
that algebraic manipulations (Idea 2) are essential to get desired quantities, especially in more
complex problems.

9
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The key to these problems is to find parallel lines, and construct more if necessary. Parallel
lines automatically create congruent interior angles or vertical angles to yield similar triangles.

Example 2.1. Given segment AB, let points E,F be on the same side of AB such that AE ⊥
AB, BF ⊥ AB. Denote the intersection of EB and AF by I. If AE = 20, BF = 30, find the
distance from I to AB.

Example 2.2. (2016 AMC 10A) In rectangle ABCD, AB = 6 and BC = 3. Point E between
B and C, and point F between E and C are such that BE = EF = FC. Segments AE and
AF intersect BD at P and Q, respectively. The ratio BP : PQ : QD can be written as r : s : t
where the greatest common factor of r, s, and t is 1. What is r + s+ t?

Parallelism

Even if there are no parallel lines initial given, we can still create our own.

Idea 9 (Construction II). Drawing parallel lines is an effective method to create new meaningful
similar triangles.

There isn’t any general rule on when to draw parallel lines. However, it is useful to draw the
parallel line through and see if we can find two pairs of similar triangles. Let us illustrate this
through two important examples. First is the angle bisector theorem, which is a frequently used
result in competition math.

Example 2.3. (Angle Bisector Theorem) In triangle ABC, D is on BC such that ̸ BAD =
̸ DAC. Prove that AB

AC = BD
DC . Hint: 24 59

For the next problem, we need to be a bit clever. As a remark, a line is “parallel” to itself, in
the sense that if there are two segments on the same line, then a third segment will be parallel
to both segments.

Example 2.4. (2004 AMC 10B) In △ABC points D and E lie on BC and AC, respectively.
If AD and BE intersect at T so that AT

DT = 3 and BT
ET = 4, what is CD

BD? Hint: 21

A

B

CE

T
D

Figure 7: Example 2.4

This parallel segment will be used in many problems involving cevian ratios. We will also
dive into more detail of this technique in Chapter 4.

It is worth discussing another specific idea that pops up from time to time.

10
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Idea 10 (Parallelogram Trick). When a segment is bisected, creating a parallelogram with the
diagonal as the bisected segment can enable us to “switch” the condition to the other diagonal
being bisected, or other parallel conditions.

This idea can often be very helpful when finding lengths, such as medians in a triangle, or
in any other case where segments are bisected.

Remark 2.1. This idea is based on the properties of the parallelogram that the diagonals bisect
each other, which in turn is enforced by triangle congruence conditions. Again, we see the power
of congruence segments.

Example 2.5. In parallelogram ABCD, let M be the midpoint of BC. Define N as the foot
of the altitude from A to line MD. Show that BA = BN .

Example 2.6. In triangle ABC, let D be on BC such that BD = CD. Suppose that points
E,F are chosen on AC,AB such that AD,BE,CF are concurrent. Show that EF ∥ BC. Hint:

38

Circles, Power of a Point and Ptolemey’s

We are back with circles. Like how parallel lines create similar triangles, congruent inscribed
angles also create similar triangles. Remember the properties of the cyclic quadrilateral (Idea
7) ?

Example 2.7. (Power of a Point) Given point P and circle ω. Suppose that lines m pass
through P and intersect ω at A,B. Similarly, have line n pass through P and intersect ω at
C,D. Prove that

PA · PB = PC · PD.

Prove this for both P inside and outside ω. What happens if line m contains a diameter of ω?

P

C

DA

B

Figure 8: Example 2.7

Power of a point is used very commonly when chord lengths are present in a problem. Do
remember that this result is nothing but congruent angles in a cyclic quadrilateral leading to
similarity.

11
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Remark 2.2. It is worth noting that both a cyclic quadrilateral and a parallelogram have two
similar triangles formed by the intersecting diagonals, just oppositely oriented! The cyclic quadri-
lateral often turns out to be more useful, as it ends up with greater degrees of freedom.

Example 2.8. (1997 AHSME) Triangle ABC and point P in the same plane are given. Point
P is equidistant from A and B, angle APB is twice angle ACB, and AC intersects BP at point
D. If PB = 3 and PD = 2, then AD · CD =

P

A B

D

C

Figure 9: Example 2.8

We may also apply similar triangles to cyclic quadrilaterals, to relate the lengths of the sides
and the diagonals. However, we need to be a bit clever in setting up similar triangles.

Example 2.9. (Ptolemy’s Theorem) Prove that in a cyclic quadrilateral ABCD,

AB · CD +BC ·DA = AC ·BD

Hint: 51

B

A

C

D

Figure 10: Example 2.9

Example 2.10. (2004 AMC 10B) In triangle ABC we have AB = 7, AC = 8, BC = 9. Point
D is on the circumscribed circle of the triangle so that AD bisects angle BAC. What is the
value of AD

CD?

It may be worthwhile to express the length of a single diagonal in terms of the sides of the
cyclic quadrilateral.

Example 2.11. (Stronger form of Ptolemy’s) In cyclic quadrilateral ABCD, let AB = a,BC =
b, CD = C,DA = d. Show that

AC2 =
(ac+ bd) · (ad+ bc)

(ab+ cd)

12
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Now, we are able to chase any length in a cyclic quadrilateral. Though most of times there
is a smarter way to solve the problem, there will be problems where bashing the lengths out is
necessary or the most straightforward.

Example 2.12. (2012 AMC 12A) Circle C1 has its center O lying on circle C2. The two circles
meet at X and Y . Point Z in the exterior of C1 lies on circle C2 and XZ = 13, OZ = 11, and
Y Z = 7. What is the radius of circle C1?

Furthermore, even when cyclic quadrilaterals aren’t given, we can create them to use Ptolemy’s.
We end by proving Stewart’s Theorem, a formula used very commonly to find lengths of arbitrary
cevians. We will state one more almost obvious but commonly used idea.

Idea 11 (Scaling). Scaling a section of a figure can simplify the problem and/or convert the
problem to a known configuration. Let similarity do the work!

And finally, we hint at an important way of thinking about complex problems. This is a
useful method of thinking when dealing with harder problems.

Idea 12 (Extracting Information). Be familiar with extracting the useful information out of the
diagram. What is the important relation between the quantities, and is there any other way to
express them?

B C

A

D

d bc

m n

Figure 11: Example 2.12

Example 2.13. (Stewart’s Theorem) Let a, b, c be the side lengths of △ABC. Let cevian AD
have length d, and let BD = m,CD = n. Then, show that

b2m+ c2n = d2a+ amn.

Hint: 34 63

13
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Problem 2.1. Given circle ω and inscribed equilateral △ABC, on minor arc AB an arbitrary
point P is chosen. CP intersects AB at D. Prove that 1

DP = 1
BP + 1

AP .

Problem 2.2. (2009 AIME I) In parallelogram ABCD, point M is on AB so that AM
AB = 17

1000

and point N is on AD so that AN
AD = 17

2009 . Let P be the point of intersection of AC and MN .

Find AC
AP . Hint: 3

Problem 2.3. (2009 AIME I) Triangle ABC has AC = 450 and BC = 300. Points K and
L are located on AC and AB respectively so that AK = CK, and CL is the angle bisector of
angle C. Let P be the point of intersection of BK and CL, and let M be the point on line BK
for which K is the midpoint of PM . If AM = 180, find LP .

Problem 2.4. (2016 AMC 12A) In △ABC, AB = 6, BC = 7, and CA = 8. Point D lies
on BC, and AD bisects ̸ BAC. Point E lies on AC, and BE bisects ̸ ABC. The bisectors
intersect at F . What is the ratio AF : FD?

A B

C

DE
F

Problem 2.5. (2014 BMT) Consider an isosceles triangle ABC (AB = BC). Let D be on BC
such that AD ⊥ BC and O be a circle with diameter BC. Suppose that segment AD intersects
circle O at E. If CA = 2 what is CE? Hint: 70

Problem 2.6. (2017 AMC 12A) Quadrilateral ABCD is inscribed in circle O and has side
lengths AB = 3, BC = 2, CD = 6, and DA = 8. Let X and Y be points on BD such that
DX
BD = 1

4 and BY
BD = 11

36 . Let E be the intersection of line AX and the line through Y parallel to

AD. Let F be the intersection of line CX and the line through E parallel to AC. Let G be the
point on circle O other than C that lies on line CX. What is XF ·XG? Hint: 46

Problem 2.7. (2003 USAMO) Let ABC be a triangle. A circle passing through A and B
intersects segments AC and BC at D and E, respectively. Lines AB and DE intersect at F ,
while lines BD and CF intersect at M . Prove that MF = MC if and only if MB ·MD = MC2.
Hint: 37 15

14
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3 Right Triangles

In this chapter, we reach the highlight of computational geometry. While similar triangles
are great to relate few special lengths in very elegant forms, right triangles enable a wider range
of computation. The Pythagorean Theorem is now your best friend. Just drop altitudes and
start computing.

In this chapter, we will start with the Pythagorean Theorem and Altitudes in triangles.
Through Heron’s formula, we motivate the definition of the Area of the triangle. Finally, we
examine the circumcircle and incircle, both closely related to right angles and triangle area.

The Pythagorean Theorem

Like isosceles triangles, right triangles are also exceptionally useful. Though isosceles triangles
are suited for angle chasing, right triangles are much more powerful with general length chasing,
especially when lots of information are given but similar triangles couldn’t be used directly.

A

C

B

Figure 12: A Right Triangle

Idea 13 (Pythagorean Theorem). In right triangle ABC with ̸ BAC = 90◦,

AB2 +AC2 = BC2.

One nice property of the Pythagorean Theorem is that it is additive with respect to the
square of lengths. So, there is no need to solve a quadratic equation for every right triangle of
the diagram.

Example 3.1. (2005 AMC 12B) In △ABC, we have AC = BC = 7 and AB = 2. Suppose
that D is a point on line AB such that B lies between A and D and CD = 8. What is BD?

Example 3.2. (2013 HMMT) Let ABCD be an isosceles trapezoid such that AD = BC,
AB = 3 and CD = 8. Let E be a point in the plane such that BC = EC and AE ⊥ EC.
Compute AE.

When dealing with circles, we often can simplify the problem to right triangles and lines,
especially if distances from the center to chords are in the problem. This illustrates an idea used
more generally when trying to comprehend a complex problem. It’s similar the to previous idea
about extracting the key information from a problem statement (Idea 12).

Idea 14 (Simplify). Reduce complicated figures (circles) to simple, approachable figures (lines).

15
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Example 3.3. (1983 AIME) A machine-shop cutting tool has the shape of a notched circle, as
shown. The radius of the circle is

√
50 cm, the length of AB is 6 cm and that of BC is 2 cm.

The angle ABC is a right angle. Find the square of the distance (in centimeters) from B to the
center of the circle. Hint: 33

B
C

A

Figure 13: Example 3.3

Example 3.4. (1995 AHSME) Two parallel chords in a circle have lengths 10 and 14, and the
distance between them is 6. The chord parallel to these chords and midway between them is of
length

√
a where a is

Question statements involving tangents of circles also tend to involve the use of the Pythagorean
Theorem. In these cases, the radii of circles tend to play nicely in the equations.

Idea 15 (Tangents I).

• For a circle and a tangent line, the line is perpendicular to the radius joining the point of
intersection and the circle’s center.

• The two tangents from a point to the same circle are congruent.

Idea 16 (Tangents II). For two tangent circles with a point of contact,

• The same line is tangent to both circles at the point of contact.

• The point of contact lies on the line joining the two centers.

We may often simplify the problem by connecting centers of tangent circles and setting their
length as r1 + r2. In the end, problems involving intimidating circles can be reduced to some
perpendicular lines in a pattern like a fish bone (Idea 14).

Example 3.5. (2013 SMT) ABCD is a rectangle with AB = CD = 2. A circle centered at
O is tangent to BC,CD, and AD (and hence has radius 1). Another circle, centered at P , is
tangent to circle O at point T and is also tangent to AB and BC. If line AT is tangent to both
circles at T , find the radius of circle P . Hint: 54

Example 3.6. (2001 AMC 12) A circle centered at A with a radius of 1 and a circle centered
at B with a radius of 4 are externally tangent. A third circle is tangent to the first two and to
one of their common external tangents as shown. What is the radius of the third circle? Hint: 7

16
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A

B

1

4

Figure 14: Example 3.6

Heron’s formula

We begin with a very logical question involving perpendicular lines (altitudes) in a triangle.
All we need is to repeatedly use the Pythagorean Theorem.

Example 3.7. (2014 AMC 10B) Trapezoid ABCD has parallel sides AB of length 33 and CD
of length 21. The other two sides are of lengths 10 and 14. The angles A and B are acute. What
is the length of the shorter diagonal of ABCD?

Of course, we may generalize this finding to arbitrary triangles. A nice bit of algebra is
necessary, though it is clear that our scenario should be solvable (Two unknown distances, two
Pythagorean equations).

Example 3.8. (Heron’s formula) Show that in triangle ABC, the length of altitude ha satisfies

h2
a =

(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

4a2
.

Hint: 1 50

Being able to find the altitude in an arbitrary triangle allows for more problems involving
length chasing to be solved.

A B

C

H

D

E

P
Q

Figure 15: Example 3.9

17
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Example 3.9. (2016 AMC 12B) In △ABC shown in the figure, AB = 7, BC = 8, CA = 9,
and AH is an altitude. Points D and E lie on sides AC and AB, respectively, so that BD and
CE are angle bisectors, intersecting AH at Q and P , respectively. What is PQ?

With the altitude known, we can compute the length for other cevians as well. We will prove
Stewart’s theorem again with Pythagorean’s and Heron’s. This is another case where we have
so much information that we would be surprised if we couldn’t solve for the unknown length!

Idea 17 (Dropping Altitudes). Even if there are no altitudes or right triangles laid out, if we
have enough lengths we can always drop an altitude and start computing. If there are some right
angles/important lines, then we can drop even more altitudes parallel/perpendicular to these
lines.

B C

A

D

d bc

m n

Figure 16: Example 1.10

Example 3.10. (Stewart’s Theorem) Let a, b, c be the side lengths of △ABC. Let cevian AD
have length d, and let BD = m,CD = n. Then, show that

b2m+ c2n = d2a+ amn.

Area

It appears that we have discovered a really nice, symmetric (well, almost) formula for the
altitude of a triangle. In fact, we we considered a · ha, then we would expect this value to be
equal to b · hb or c · hc. Thus, this can be said to be a property of the triangle.

It is not hard to prove, actually without Heron’s formula, that a · ha = b · hb.

Example 3.11. Show with similar triangles that in triangle ABC with altitudes AD and BE,
we have AD ·BC = BC ·AC.

This idea is surprisingly powerful that I’m quite surprised doesn’t have a name. We chose to
define this idea as area, and we typically notate area of △ABC as [ABC]. It turns out that area
is additive - if we split a triangle into two, then the sum of areas of the two smaller triangles is
equal to the area of the larger triangle.

Also, we can extend the notion of area to other polygons as a sum or difference of triangles.
We won’t be proving this, but the area is well-defined for simple polygons.

18
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Idea 18 (Area of a Polygon). The area of a polygon satisfies the following properties

• The area of a triangle is a side length multiplied by the length of the altitude to that side,
divided by 2. (A = 1

2 · b · h)

• Area is additive. When two polygons share a side, then the sum of area of individual
polygons is the same as the area of the polygon ‘merged’ from the two polygons removing
the side.

We need not think of area as anything special, but rather just a “nice” property of triangles
that allows for creating problems. We may treat this just another length condition. Other times,
we can use area ourselves to describe similar triangles.

Remark 3.1. Unfortunately, we won’t quite be able to see what the area of a circle is. This will
be inevitable, as the first formal definition of area will probably come from your calculus class.
Regardless, you probably know Acircle = πr2 already to deal with problems.

Inradius and Circumradius

Closely related to right triangles and thus area are the incenter (inradius r) and circumcemter
(circumradius R) of a triangle.

Remember that the incenter is equidistant to the sides of the triangle and the circumcemter
is equidistant to the points of a triangle. We know that they exist from Example 1.1.

Example 3.12. Use similar triangles and ratios to show that in △ABC with circumradius R,
we have

[ABC] =
abc

4R
.

Hint: 30

The case with the incenter is slightly more complicated, but keep everything of the chapter
in mind, and the example can be solved. We will highlight one more idea that is commonly used
as a conjunction of similarity and right triangles

Idea 19 (Trigonometry). When two right triangles are have some related angle condition (such
as one angle being double the angle in another), scaling the two right triangles to share a base
can simplify the problem.

The essence of trigonometry is that trigonometry (Idea 19) is just scaling (Idea 11) for right
triangles!

Example 3.13. Use similar triangles and ratios to show that in △ABC,

[ABC] = rs where s =
a+ b+ c

2
.

Then, use the idea that area is additive to reprove the statement. Hint: 44 11

It turns out that the notation s for the “semi-perimeter” is pretty nice and can be substituted
back into Heron’s formula. We now combine all our formulae for the area of a triangle.
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Idea 20. Area Formulae Finding different ways of expressing area is the key to many problems.
In particular, for a triangle we have

[ABC] =
a · ha

2
=
»

s(s− a)(s− b)(s− c) = rs =
abc

4R

Now, looking in the opposite direction, we finally have altitudes, circumradii and inradii
written in terms of side lengths of a triangle. Combining it with a bit more Pythagorean
theorem (do keep in mind that everything is doable because of the Pythagorean Theorem), we
can compute some interesting lengths in problems.

Example 3.14. (2012 AMC 12A) Triangle ABC has AB = 27, AC = 26, and BC = 25. Let I
be the intersection of the internal angle bisectors of △ABC. What is BI?

Example 3.15. (2003 AIME II) Find the area of rhombus ABCD given that the radii of the
circles circumscribed around triangles ABD and ACD are 12.5 and 25, respectively.
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Problem 3.1. (2002 AMC 10A) In trapezoid ABCD with bases AB and CD, we have AB = 52,
BC = 12, CD = 39, and DA = 5. The area of ABCD is

Problem 3.2. (2004 AMC 10A) Points E and F are located on square ABCD so that △BEF
is equilateral. What is the ratio of the area of △DEF to that of △ABE?

A B

CD

E

F

Problem 3.3. (2009 AMC 12A) A circle with center C is tangent to the positive x and y-axes
and externally tangent to the circle centered at (3, 0) with radius 1. What is the sum of all
possible radii of the circle with center C?

Problem 3.4. (2008 AIME II) In triangle ABC, AB = AC = 100, and BC = 56. Circle P has
radius 16 and is tangent to AC and BC. Circle Q is externally tangent to P and is tangent to
AB and BC. No point of circle Q lies outside of △ABC. The radius of circle Q can be expressed
in the form m − n

√
k, where m, n, and k are positive integers and k is the product of distinct

primes. Find m+ nk. Hint: 26 64

Problem 3.5. (2016 AMC 12A) Circles with centers P,Q and R, having radii 1, 2 and 3,
respectively, lie on the same side of line l and are tangent to l at P ′, Q′ and R′, respectively,
with Q′ between P ′ and R′. The circle with center Q is externally tangent to each of the other
two circles. What is the area of triangle PQR? Hint: 57

Problem 3.6. (2011 AIME II) A circle with center O has radius 25. Chord AB of length 30
and chord CD of length 14 intersect at point P . The distance between the midpoints of the two
chords is 12. The quantity OP 2 can be represented as m

n , where m and n are relatively prime
positive integers. Find the remainder when m+ n is divided by 1000. Hint: 47

Problem 3.7. (2007 AIME II) Four circles ω, ωA, ωB , and ωC with the same radius are drawn
in the interior of triangle ABC such that ωA is tangent to sides AB and AC, ωB to BC and
BA, ωC to CA and CB, and ω is externally tangent to ωA, ωB , and ωC . If the sides of triangle
ABC are 13, 14, and 15, the radius of ω can be represented in the form m

n , where m and n are
relatively prime positive integers. Find m+ n. Hint: 71 27

Problem 3.8. (2012 AIME II) Triangle ABC is inscribed in circle ω with AB = 5, BC = 7,
and AC = 3. The bisector of angle A meets side BC at D and circle ω at a second point E.
Let γ be the circle with diameter DE. Circles ω and γ meet at E and a second point F . Then
AF 2 = m

n , where m and n are relatively prime positive integers. Find m+ n. Hint: 55 62
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4 Similar Triangles - Part II

As we have seen in the previous chapter, the area of the triangle is a very special property
that is based on similarity of right triangles. This chapter combines the two ideas from previous
chapters: similarity and area.

We will start by examining the relation of triangle areas without altitudes drawn in. Then,
we will examine ratios of cevians in a triangle, including the famous Menelaus’s and Ceva’s
theorem. We will also gain familiarity with ratios of areas, and learn to convert between length
ratios and area ratios.

Right triangles and Area ratios

For two triangles sharing just one congruent angle, we can still obtain the area ratio of the
triangles in terms of the pair of sides, even though there are no right angles labeled anywhere.
Try drawing in parallel altitudes, and see what happens.

Example 4.1. (2005 AMC 10A) In ABC we have AB = 25, BC = 39, and AC = 42. Points
D and E are on AB and AC respectively, with AD = 19 and AE = 14. What is the ratio of the
area of triangle ADE to the area of the quadrilateral BCED? Hint: 72

Example 4.2. (2004 AMC 10B) In the right triangle △ACE, we have AC = 12, CE = 16, and
EA = 20. Points B, D, and F are located on AC, CE, and EA, respectively, so that AB = 3,
CD = 4, and EF = 5. What is the ratio of the area of △DBF to that of △ACE?

A

B

C D E

F

3

9

4 12

5

15

Figure 17: Example 4.2

Cevian Ratios, Menelaus’s

Triangles and its cevians are the some of the most common geometry object used for compu-
tational geometry problems. It is within our interest to analyze them in greater detail. Though
we have done many related problems in chapter 2, we want to form some generalized relations
about ratios in a triangle.

For convenience, in this section our reference triangle will be △ABC, with D,E, F on
BC,CA,AB, respectively, such that the three cevians AD,BE,CF concur at a single point
P . (see figure)

Based on our experiences with construction (Idea 3 and Idea 9), we now will write out:
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A B

C

F

D
E

P

Figure 18: Standard Setup

Idea 21 (Construction III). When two geometric objects are related by some equivalence relation
(congruence or parallelism), but we can not directly use that equivalence, then we should construct
a third object equivalent to both.

This is a very important concept, that was even mentioned in Euclid’s axioms, as “Things
which are equal to the same thing are also equal to one another.”

Indeed, for both congruence construction and parallel line constructions, the way that we
actually use that information is to get more expressions than we put in. Ideally, if we draw one
segment, and get two relations about that segment, then we have found something new.

For this section, upon construction of parallel lines, we want to express the new segment’s
length using two different similar triangles. Let us start with a scenario similar to some we
encountered in section 2.

Example 4.3. (Menelaus’s theorem) In △ABC, cevians AD and BE intersect at P . Show that

CE

EA
· AP

PD
· DB

BC
= 1

Hint: 16

The formula might look a bit scary, but one can always check by the parallel line method.
Furthermore, all the letters are “cyclic”, which is an aid in writing the correct formula.

Great! Now, we can relate between cevian ratios and side ratios.

Remark 4.1. Though we stated the ratios of cevians inside a triangle, as more computational
problems generally are set up this way, this theorem traditionally stated in terms of ACD as the
reference triangle. In this form, it is more convenient to use the converse of the theorem to prove
that the three points B,P,E are collinear.

Unfortunately, a nice formula relating two cevian ratios and one side ratios AP/DP , BP/EP ,
AE/CE (like what we had in Example 2.4) does not exist. Regardless, we can still construct
the same parallel line and write the similarity in terms of the given ratios.

Another cute result is the adding ratios result. This time, a bit more algebraic manipulation
is necessary. Nonetheless, after constructing the right parallel line, the rest of the work is quite
straightforward.

Example 4.4. Show that
AE

EC
+

BD

DC
=

CP

PF
.

Finally, we will do an example to see Menelaus’s in action.
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Example 4.5. (2002 AIME II) In triangle ABC, point D is on BC with CD = 2 and DB = 5,
point E is on AC with CE = 1 and EA = 3, AB = 8, and AD and BE intersect at P. Points
Q and R lie on AB so that PQ is parallel to CA and PR is parallel to CB. It is given that
the ratio of the area of triangle PQR to the area of triangle ABC is m/n, where m and n are
relatively prime positive integers. Find m+ n.

Area Ratios, Ceva’s

Now, we turn our view to relations involving three side ratios and three cevian ratios. Though
the next two results can be solved algebraically using the two previous results (you are encouraged
to check so!), we will utilize a new technique involving area.

Idea 22 (Switching Ratios). A way to simplify arithmetic about ratios is to convert between
length ratios and area ratios, and use the additive property of areas and lengths, respectively.

We have already seen that area ratios can be written as length ratios, in some cases described
in Example 4.1. Here, we will see some more ratio breakdowns.

Idea 23 (Areas in a Triangle). In our standard setup, let Ka = [BCP ], and define Kb, Kc,
respectively. Express desired ratios in terms of Ka,Kb,Kc,

This might appear a bit random at first, but it should make more sense as we do work
through the examples.

Example 4.6. (Ceva’s Theorem) In triangle ABC, let cevians AD,BE,CF intersect at P .
Show that

AF

FB
· BD

DC
· CE

EA
= 1.

Hint: 5

Indeed, this is quite faster to derive. However, it is important to bear in mind why labeling
K works. Unlike the previous examples involving the creation of solely parallel lines, the area
solution is secretly creating perpendicular lines!

We drop the perpendiculars from two vertices A,B, to line CD, and create similar right
triangles. But the ratios are able to “switch over” to the other four altitudes, by the properties
of the triangle area (Example 3.11).

Let us use the area idea on two more examples.

Example 4.7. (1992 AIME) In triangle ABC , A′, B′, and C ′ are on the sides BC, AC, and
AB, respectively. Given that AA′, BB′, and CC ′ are concurrent at the point O, and that
AO
OA′ +

BO
OB′ +

CO
OC′ = 92, find AO

OA′ · BO
OB′ · CO

OC′ . Hint: 43

Example 4.8. (2018 PUMaC) Let △ABC be triangle with side lengths AB = 9, BC =
10, CA = 11. Let O be the circumcenter of △ABC. Denote D = AO ∩BC,E = BO ∩CA,F =

CO ∩AB. If 1/AD + 1/BE + 1/FC can be written in simplest form as a
√
b

c , find a = b+ c.

Remark 4.2. Other then defining K above (Idea 23), there are also other ways to set up 3
special values on a triangle cevian system. A notable example is mass points, which is related to
the adding ratios result.
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When Equality Occurs

The fact that the area is two lengths multiplied together means that we can decompose area
ratios to ratios of pairs of lengths. It is quite common in problems for triangles to share the
same height, and have different bases on the same line. Here, the ratio of heights vanish. Then,
the area ratios is just the ratio of base length. We formally write this idea as follows:

Idea 24 (Area Ratios).

• If two triangles have an equal pair of base lengths, then the ratio of their areas is equal to
the ratio of their heights.

• If two triangles have an equal pair of heights, then the ratio of their areas is equal to the
ratio of their base lengths.

Example 4.9. (2008 AMC 10A) Trapezoid ABCD has bases AB and CD and diagonals inter-
secting at K. Suppose that AB = 9, DC = 12, and the area of △AKD is 24. What is the area
of trapezoid ABCD?

Example 4.10. (2006 AMC 10B) A triangle is partitioned into three triangles and a quadrilat-
eral by drawing two lines from vertices to their opposite sides. The areas of the three triangles
are 3, 7, and 7, as shown. What is the area of the shaded quadrilateral? Hint: 39 66

3
7

7

Figure 19: Example 4.10

There are finally a class of problems that require to prove equal areas. Usually, using area
ratios are not the quickest and most direct forms of proof. However, they are probably among
the most elegant forms of proof, and can often be transcribed into proofs without words. In
other problems, using equal areas can change the problem statement to simplify the remainder
of the problem.

Our central idea this section can be visualized as follows:

Idea 25 (Sliding the Third Point). Given △ABC, let ℓ be the line through A parallel to BC.
Then, for any point A′ on ℓ,

[ABC] = [A′BC].
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Example 4.11. (Euclid’s proof) Given △ABC with hypotenuse AC, let points U, V,W,X, Y, Z
be points such that ABV U , BCXW , ACZY are squares outside △ABC. Using area ratios,
prove that

[ABV U ] + [BCXW ] = [ACZY ].

Hint: 41 67

A B

C

U V

W

X

Y

Z

Figure 20: Example 4.11

Example 4.12. (2014 PUMaC) △ABC has side lengths AB = 15, BC = 34, and CA = 35.
Let the circumcenter of ABC be O. Let D be the foot of perpendicular from C to AB. Let R
be the foot of perpendicular from D to AC, and let W be the perpendicular foot from D to BC.
Find the area of quadrilateral CROW . Hint: 6 18

26



Ideas and Insight in Synthetic Geometry 27

Problem 4.1. (2013 AMC 10B) In triangle ABC, medians AD and CE intersect at P , PE =
1.5, PD = 2, and DE = 2.5. What is the area of AEDC?

Problem 4.2. (2020 SMT) Let ABC be an acute triangle with BC = 4 and AC = 5. Let D be
the midpoint of BC,E be the foot of the altitude from B to AC, and F be the intersection of the
angle bisector of ̸ BCA with segment AB. Given that AD,BE, and CF meet at a single point
P , compute the area of triangle ABC. Express your answer as a common fraction in simplest
radical form.

Problem 4.3. (2018 HMMT) In the quadrilateral MARE inscribed in a unit circle ω, AM is
a diameter of ω, and E lies on the angle bisector of ̸ RAM . Given that triangles RAM and
REM have the same area, find the area of quadrilateral MARE.

Problem 4.4. (2017 AIME II) Rectangle ABCD has side lengths AB = 84 and AD = 42.
Point M is the midpoint of AD, point N is the trisection point of AB closer to A, and point O
is the intersection of CM and DN . Point P lies on the quadrilateral BCON , and BP bisects
the area of BCON . Find the area of △CDP . Hint: 35

Problem 4.5. (2019 HMMT) Convex hexagon ABCDEF is drawn in the plane such that
ACDF and ABDE are parallelograms with area 168. AC and BD intersect at G. Given that
the area of AGB is 10 more than the area of CGB, find the smallest possible area of hexagon
ABCDEF . Hint: 45

Problem 4.6. (2003 AIME I) In △ABC,AB = 360, BC = 507, and CA = 780. Let M be the
midpoint of CA, and let D be the point on CA such that BD bisects angle ABC. Let F be the
point on BC such that DF ⊥ BD. Suppose that DF meets BM at E. The ratio DE : EF can
be written in the form m/n, where m and n are relatively prime positive integers. Find m+ n.
Hint: 76

B C

A

D

E

F

Problem 4.7. (One-seventh Area Triangle) In triangle ABC, points D,E, F are on segments
BC, CA, AB, respectively, such that BD = 2DC, CE = 2EA, AF = 2FB. Prove that the
triangular region bounded by AD,BE,CF has one-seventh the area of triangle ABC.

• In the case that △ABC is equilateral, prove the statement without writing out cevian
ratios (no Menelaus’s)

• In the general case, reprove the statement.

Hint: 58
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5 Circles

For the final chapter, we will go over some challenging problems, some of which are intended
to be beyond the level of problems to solve on competitions. This chapter contains some specific
configurations, which we will tie in with the rest of the handout. Circles are a main theme, and
synthetic techniques from previous chapters are frequently used.

In this chapter, you are on your own. Examples and problems will be grouped for you, but
it is your own job to discover the main idea behind these problems.

Don’t be afraid to spend lots of time on a single problem. Due to the difficulty of these
problems, hints are frequently provided, and you are strongly encouraged to use them. Good
luck.

Recap

We will summarize some key synthetic ideas of the handout.

• Look for congruence and symmetry. Create congruent triangles. (Idea 3 )

• Use cyclic quadrilaterals to find angle relations (Idea 7)

• Construct parallel lines and parallelograms. (Idea 9, Idea 10)

• Similar triangles is the most powerful technique to relate lengths. (Idea 8)

Warm Up: Angle Chasing

Example 5.1. (2015 AIME I) Point A,B,C,D, and E are equally spaced on a minor arc of
a circle. Points E,F,G,H, I and A are equally spaced on a minor arc of a second circle with
center C as shown in the figure below. The angle ̸ ABD exceeds ̸ AHG by 12◦. Find the degree
measure of ̸ BAG. Hint: 25 10

C

GH

I

A

F

E

B D

Figure 21: Example 5.1

Example 5.2. (2012 HMMT) There are circles ω1 and ω2. They intersect in two points, one
of which is the point A. B lies on ω1 such that AB is tangent to ω2. The tangent to ω1 at B
intersects ω2 at C and D, where D is the closer to B. AD intersects ω1 again at E. If BD = 3
and CD = 13, find EB/ED. Hint: 60 40

Example 5.3. (2019 AIME I) In convex quadrilateral KLMN , side MN is perpendicular to
diagonal KM , side KL is perpendicular to diagonal LN , MN = 65, and KL = 28. The line
through L perpendicular to side KN intersects diagonal KM at O with KO = 8. Find MO.
Hint: 69
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Symmetry

Example 5.4. (2007 AIME II) Square ABCD has side length 13, and points E and F are
exterior to the square such that BE = DF = 5 and AE = CF = 12. Find EF 2.

Example 5.5. (2005 AIME II) Square ABCD has center O, AB = 900, E and F are on
AB with AE < BF and E between A and F,m ̸ EOF = 45◦, and EF = 400. Given that
BF = p+ q

√
r, where p, q, and r are positive integers and r is not divisible by the square of any

prime, find p+ q + r. Hint: 2

Example 5.6. (2018 AMC 12B) Circles ω1, ω2, and ω3 each have radius 4 and are placed in
the plane so that each circle is externally tangent to the other two. Points P1, P2, and P3 lie on
ω1, ω2, and ω3 respectively such that P1P2 = P2P3 = P3P1 and line PiPi+1 is tangent to ωi for
each i = 1, 2, 3, where P4 = P1. See the figure below. The area of △P1P2P3 can be written in
the form

√
a+

√
b for positive integers a and b. What is a+ b? Hint: 42 65

ω1

ω2ω3

P1

P2

P3

Figure 22: Example 5.6

Cyclic Quadrilaterals and Similarity

Example 5.7. (Existence of Orthocenter) Show that in a triangle ABC, the three altitudes
AD,BE,CF concur at one point. Hint: 19 31

Example 5.8. (2013 AMC 10B) In triangle ABC, AB = 13, BC = 14, and CA = 15. Distinct
points D, E, and F lie on segments BC, CA, and DE, respectively, such that AD ⊥ BC,
DE ⊥ AC, and AF ⊥ BF . The length of segment DF can be written as m

n , where m and n are
relatively prime positive integers. What is m+ n? Hint: 23

Example 5.9. (2010 IMO Shortlist) Let ABC be an acute triangle with D,E, F the feet of the
altitudes lying on BC,CA,AB respectively. One of the intersection points of the line EF and
the circumcircle is P. The lines BP and DF meet at point Q. Prove that AP = AQ. Hint: 52 49
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Reflections and Bisections

Example 5.10. (2019 HMMT) Isosceles triangle ABC with AB = AC is inscribed in a unit
circle Ω with center O. Point D is the reflection of C across AB. Given that DO =

√
3, find

the area of triangle ABC.

A

B C

D

E

F

H

M

Figure 23: Example 5.11

Example 5.11. (Reflection of Orthocenter) In triangle ABC, let H be the orthocenter, D be
the foot of altitude from A to BC, and M be the midpoint of BC. Show that the reflection of
D over BC and the reflection of D over M lies on the circumcircle of △ABC. Hint: 9 53

A

B C

Figure 24: Example 5.12

Example 5.12. (9-point Circle) In △ABC, show that the midpoints of the sides, the foots of
altitudes, and the midpoints between the orthocenter and the vertices all concur on one circle.
Hint: 28 14
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Congruence and Overlay

Example 5.13. (2016 AIME I) In △ABC let I be the center of the inscribed circle, and let the
bisector of ̸ ACB intersect AB at L. The line through C and L intersects the circumscribed
circle of △ABC at the two points C and D. If LI = 2 and LD = 3, then IC = m

n , where m
and n are relatively prime positive integers. Find m+ n. Hint: 17

Example 5.14. (2013 HMMT) Let triangle ABC satisfy 2BC = AB + AC and have incenter
I and circumcircle ω. Let D be the intersection of AI and ω (with A,D distinct). Prove that I
is the midpoint of AD. Hint: 12

Example 5.15. (2005 IMO Shortlist) Given a triangle ABC satisfying AC+BC = 3 ·AB. The
incircle of triangle ABC has center I and touches the sides BC and CA at the points D and
E, respectively. Let K and L be the reflections of the points D and E with respect to I. Prove
that the points A, B, K, L lie on one circle. Hint: 61 48

Example 5.16. (Euler’s formula) In △ABC, let O, I denote the circumcenter, incenter, respec-
tively. Show that

OI2 = R(R− 2r)

Hint: 74

Final Advice

To approach difficult problems, we need to find what really is happening in the problem.

• Simplify the problem. Have we seen this configuration before? (Idea 14)

• Determine what really is the relationship between parts of the configuration. (Idea 12)

• Move parts of the configuration around, and change the problem statement. (Idea 3, Idea
12)

Draw big, labeled diagrams. Redraw diagrams after changing the problem statement, or
when viewing the problem from a different prospective.

At this point, I highly recommend that you have worked through all previous examples
and problems before proceeding. In particular, make sure to really understand Example 5.2,
Example 5.7, and Example 5.11.

When you are ready, flip over the page.
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Challenging problems

Problem 5.1. (2015 AIME II) Circles P and Q have radii 1 and 4, respectively, and are
externally tangent at point A. Point B is on P and point C is on Q so that line BC is a
common external tangent of the two circles. A line ℓ through A intersects P again at D and
intersects Q again at E. Points B and C lie on the same side of ℓ, and the areas of △DBA and
△ACE are equal. This common area is m

n , where m and n are relatively prime positive integers.
Find m+ n.

A

B C

D

E

Problem 5.2. (2019 AIME I) Let AB be a chord of a circle ω, and let P be a point on the
chord AB. Circle ω1 passes through A and P and is internally tangent to ω. Circle ω2 passes
through B and P and is internally tangent to ω. Circles ω1 and ω2 intersect at points P and Q.
Line PQ intersects ω at X and Y . Assume that AP = 5, PB = 3, XY = 11, and PQ2 = m

n ,
where m and n are relatively prime positive integers. Find m+ n.

Problem 5.3. (2019 AIME II) In acute triangle ABC points P and Q are the feet of the per-
pendiculars from C to AB and from B to AC, respectively. Line PQ intersects the circumcircle
of △ABC in two distinct points, X and Y . Suppose XP = 10, PQ = 25, and QY = 15. The
value of AB · AC can be written in the form m

√
n where m and n are positive integers, and n

is not divisible by the square of any prime. Find m+ n.

Problem 5.4. (2020 AIME I) Let △ABC be an acute triangle with circumcircle ω, and let H
be the intersection of the altitudes of △ABC. Suppose the tangent to the circumcircle of △HBC
at H intersects ω at points X and Y with HA = 3, HX = 2, and HY = 6. The area of △ABC
can be written in the form m

√
n, where m and n are positive integers, and n is not divisible by

the square of any prime. Find m+ n.
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A Problem Sources

The examples and problems used in this handout comes from the following competitions:

• (AMC) American Mathematics Competitions

• (AHSME) American High School Mathematics Examination

• (AIME) American Invitational Mathematics Examination

• (USAMO) United States of America Mathematical Olympiad

• (IMO Shortlist) Shortlist of the International Mathematical Olympiad

• (HMMT) Harvard-MIT Mathematics Tournament

• (PUMaC) Princeton University Mathematics Competition

• (CMIMC) Carnegie Mellon Informatics and Mathematics Competition

• (SMT) Stanford Mathematics Tournament

• (BMT) Berkeley Math Tournament
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B Hints

1. Let D be the foot of altitude ha. Then, CD = x,BD = a− x. Can we solve x?

2. Two 45◦ makes a 90◦ angle. How can we use the symmetry of a square?

3. Can we scale (Idea 11) to turn the parallelogram into a triangle?

4. Let AB and CD meet at Z. Why is I, the incenter of BZC, important?

5. Try writing AF/FB in terms of K’s given in Idea 23

6. The circumcenter lies on the intersection of perpendicular bisectors. Let X,Y be midpoints of
AC,BC, respectively.

7. BT is tangent to both circles. How can we use the property of tangents (Idea 15)?

8. The condition 2 ·BD = CD is not helpful. Can we get congruent segments instead?

9. I see three congruent triangles.

10. Look at △ACE and in particular ̸ ACE.

11. Let AD be an altitude, and have CI intersect AD at P . Can we find PD? How can we then use
Idea 19?

12. Let X be the point of contact between the incircle and AB. What also has length AX?

13. Try Idea 6. Do you see multiple congruent figures?

14. Let N be the midpoint of H,O.

15. What angles are congruent to ̸ MBC?

16. Draw in that line segment we need from Idea 21.

17. Try to prove AD = BD = ID.

18. Split CROW up cleverly. Then, try to find other triangles of equal area (Idea 25)!

19. First, let H be the intersection of BE,CF . There are two cyclic quadrilaterals.

20. Construct D so △ADC is isosceles. Can you now apply Idea 6?

21. There is one convenient line segment parallel to both CD and BD.

22. Why is C special (Idea 4)? Are there any hidden isosceles triangles?

23. Various lengths can be computed independent of each other.

24. Draw line ℓ through C parallel to AB (Idea 9).

25. Remember (Idea 7), and also measures of arcs.

26. First, we simplify the problem to a fishbone by Idea 14.

27. Let △OAOBOC ∼ △ABC. Express the ratio in two ways: One involving the circumraduis, and
one involving the angle bisectors and Idea 19.

28. What characteristic do all 9 points share?

29. Note that △CDB is isosceles. Now, reflect Y over the line of symmetry for △CDB (Idea 6).

30. Let M be the midpoint of BC. Find a pair of similar triangles.

31. Find angles congruent to ̸ HEF , and also express it in terms of angles in △ABC.

32. We like equilateral triangles. Let us take R on AQ so △APR is equilateral.
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33. Extend parallel and perpendicular segments, until we can apply the Pythagorean Theorem (Idea
13).

34. Look at △ADB and △ADC separately. What special relations (Idea 12) exist between the two
triangles?

35. Complementary counting.

36. I see three congruent triangles (Idea 3).

37. The equation MB ·MD = MC2 seems to resemble ratios (Idea 8).

38. Rather than angles, use length ratios.

39. Try splitting the region into two.

40. Honestly, just look at the solution.

41. Let Q be foot from B to ZY . Which figures have area?

42. Draw P ′
1 on its location relative to ω1, but instead on ω2, What can we say by symmetry?

43. Once again, write AO/OA′ in terms of K’s given in Idea 23. Don’t be afraid of algebra (Idea 2)!

44. If we have an angle bisector, we should somehow be able to use the angle bisector theorem.

45. Reduce the parallelograms to triangles ACD,ABD (Idea 12). What must be true of BC?

46. Just follow through, and unwind the mess; use similarity (Idea 8) to change the final answer into
something nicer, one step at a time.

47. Find the cyclic quadrilateral.

48. Remember, ̸ CEI = 90◦.

49. Remember that ̸ C = ̸ AFE = ̸ BFD.

50. Don’t be afraid of algebra (Idea 2)!

51. Reflect AC over the angle bisector of ̸ BAD. What does this imply?

52. There is a cyclic quadrilateral containing Q.

53. Let the reflection of H over BC, M be H ′, H†, respectively. For the former, use angles; for the
later, use lengths.

54. AT is tangent to both circles. How can we use the property of tangents (Idea 15)?

55. Consider GE, the diameter of ω.

56. Draw X so that XDB is equilateral (Idea 5). Draw Y as X reflected over line of symmetry for
isosceles △ACB (Idea 6).

57. Parallel and perpendicular lines.

58. Let AD,BE intersect at X. Look at △BXC.

59. Isosceles triangles (Idea 2) can convert angle and length congruence.

60. Can we still use angles of cyclic quadrilaterals (Idea 7) for tangent lines? Yes, we can.

61. Let CI intersect the circumcircle of △ABC at P . What also has length CE

62. Can we find AD, GD, and GE separately?

63. Try rotating △ABD at an angle of ̸ DAC with respect to A. Use scaling (Idea 11) as appropri-
ate.
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64. Then, apply Idea 19 to relate the lengths we are missing.

65. O1P1P
′
1O2 is a parallelogram. Furthermore, ̸ P2O2P

′
1 = 120◦.

66. For each length ratio, find two corresponding area ratios!

67. △ZAB ∼= △CAU .

68. This time, what happens if we reflect E over BD? How may we use Idea 5?

69. Find three congruent angles.

70. Where does circle O intersect AC?

71. Idea 8 does the trick. What can I say about O with respect to △OAOBOC?

72. Just drop two altitudes onto AB (Idea 17). Any similar triangles?

73. Try rotating P 60◦ about A (Idea 5). Do you see any isosceles triangles and congruent triangles?

74. Rewrite the formula with Power of a Point.

75. Rotate P 60◦ about C. Do you see any equilateral triangles?

76. Draw D′ so that BD ∥ D′C, and BDCD′ is an isosceles trapezoid. What have we really done
here?
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