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1 Solutions to Section 1 Examples

Solution to Example 1.1.

To show concurrency, our strategy is to define the point of intersection of two of the three
lines. Then, we argue that the point must lie on the third line.

We first show that the three perpendicular bisectors concur at one point. Let the midpoints
of BC,CA,AB be D,E, F , respectively.

Suppose that perpendicular bisector to AB,AC intersects at O. We know that AE = EC,
EO = EO, and ̸ AEO = ̸ CEO = 90◦. So, by SAS/HL congruence we have that and △AOE ∼=
△COE. A similar argument shows △AOF ∼= △BOF . Therefore, we have AO = OB and
AO = CO.

A B

C

O

F

E D

So, we must also have OB = OC, or O is equidistant from B and C. Since△COB is isosceles,
we also have ̸ OCD = ̸ OBD. Furthurmore, we started with CD = DB. By SAS congruence,
△OCD = △OBD. Thus, ̸ ODC = ̸ ODB = 90◦, and O also lies on the perpendicular bisector
of CB.

Now, let angle bisectors for ̸ B and ̸ C intersect at I. Since BI is an angle bisector of B,
I must be equidistant from AB and AC. Let the perpendiculars from I to AB,BC be Z,X,
respectively. Then, IZ = IX.

A B

C

I

Z

X
Y

By similar reasoning on ̸ C, IX = IY . Then, IY = IZ, which implies by HL congruence
that △IY A = △IZA, and I again must lie on the angle bisector of ̸ A. So, the three angle
bisectors are concurrent.
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Solution to Example 1.2.

This problem is straightforward computation. However, it is worth noting a small “formula”
(though you really will be using this so often it just comes naturally):

Suppose that the angles in an isosceles triangle are x, x, y. Then, x+ x+ y = 180◦. We may
also write

y = 180◦ − 2x or x =
180◦ − y

2

Returning to our example, we may compute

̸ BAC =
180◦ − 40◦

2
= 70◦ and ̸ DAC =

180◦ − 140◦

2
= 20◦.

Finally, since D is in the interior of ̸ BAC, by angle addition (subtraction) we have

̸ BAD = ̸ BAC − ̸ DAC = 70◦ − 20◦ = 50◦.

Solution to Example 1.3.

B C

A

P

x

180◦ − 2x

x
180◦ − 4x2x

2x

This time, there aren’t any angles that we can directly obtain. Instead, we will need to solve
for using algebra.

Let ̸ BAC = x. Then, we fill in angles of △APC, keeping in mind that AP = PC.

̸ APC = 180− 2x and ̸ PAC = x

Next, we know that ̸ BPC = 180− ̸ APC = 2x. So, looking at isosceles △BCP ,

̸ PBC = 2x and ̸ PCB = 180− 4x

We still haven’t used that △BAC is isosceles, or ̸ ABC = ̸ ACB. Then,

2x = 180− 4x+ x =⇒ x = 36◦

In these problems, it is efficient to do the algebra on the diagram, by simply labeling in
known angles as you progress through the algebra.
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Solution to Example 1.4.

Let ̸ ACB = x, and ̸ ABC = x− 30◦. It follows that

̸ BAC = 180◦ − x− (x− 30◦) = 210◦ − 2x.

However, △BAD is isosceles, so

̸ ABD =
180− ̸ BAD

2
= x− 15◦

As ̸ CBD + ̸ ABC = ̸ ABD, we finally get

̸ CBD + x− 30◦ = x− 15◦ =⇒ ̸ CBD = 15◦.

Nicely, x cancels, and we get a definitive solution. It turns out that ̸ ACB and related angles
are indeed not well-defined, but ̸ CBD somehow is. Indeed, this example may just attributed
to a nice accident.

Solution to Example 1.5.

B C

A

P

P ′

120◦

60◦

60◦

There are multiple ways of solving this problem, but let us try out new ideas. To employ the
symmetry of the equilateral triangle, we rotate P about A by 60◦ to P ′. Now, AP = AP ′, and
since B gets mapped to C, BP = BC ′. Indeed, we can say △ABP ∼= △ACP ′.

Now, since ̸ PAP ′ = 60◦, PAP ′ is actually in equilateral triangle! So,

PP ′ = AP = 2BP = 2CP ′.

Furthermore,
̸ PP ′C = ̸ AP ′C − ̸ AP ′P = 120◦ − 60◦ = 60◦.

Recalling that PP ′ = 2PC, we get that △PP ′C is actually a 30-60-90 triangle. Thus,
̸ CPP ′ = 30◦, and ̸ CPA = 90◦.

Solution to Example 1.6.

This is an example where everything feels nice. Clearly, E is well defined, and if we suppose
△AEB is equilateral, all angels work nicely. However, that is all circular reasoning. Triangle
angle sum alone gets us nowhere. ̸ DEA, ̸ DAE remains a mystery.
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A B

CD

E

E′

60◦ 150◦

150◦ 150◦

60◦

Instead, let us try something smarter. We reflect E about BD to E′. Since C is mapped to
A, DE′ = DE and AE′ = CE.

Furthermore, ̸ ADE′ = ̸ EDC = 15◦, which implies that ̸ EDE′ = 60◦, and △E′DE is
equilateral. So, EE′ = DE′!

Then, ̸ CE′E = 60◦. Finally, as ̸ EE′A = 360◦ − ̸ AE′D − ̸ CE′E = 150◦.

Alas, we have another congruent angle formed! It follows that △AE′E ∼= AE′D, and
̸ E′AE = ̸ DAE′ = 15◦, so ̸ EAB = 60◦.

Similar reasoning shows that ̸ EBA = 60◦, and △AEB is equilateral.

What was nice about this problem is that there turned out to be a hidden equilateral triangle
among with congruent figures. This theme will show up repeatedly throughout the section.

Solution to Example 1.7.

Reflect N over M to N ′. We have △N ′MB ∼= △NMC by SAS. So, ̸ MBN ′ = ̸ MCN =
90◦, and N ′ is on AB.

Here, ̸ AMN ′ = ̸ AMN = 90◦, since AM ⊥ MN . Along with MN ′ = MN , we have
△AMN ′ ∼= AMN by SAS. Therefore, ̸ NAM = ̸ N ′AM , and with B on AN ′, we have
̸ NAM = ̸ N ′AM = ̸ BAM , as desired.

Solution to Example 1.8.

Extend PC to meet AB at D. ̸ BAC = ̸ PCA = 48◦, and △ADC is isosceles.

Reflect P over the line of symmetry of △ADC to P ′ (P ′ is on AD). Because CP ′ = AP and
AP = BC, we have CP ′ = BC, and △P ′CB is isosceles.

That was the critical observation we needed to utilize congruence. Now, we finish the arith-
metic:

̸ CP ′D = ̸ APD = ̸ PAC + ̸ PCA = 78◦.
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A C

B

P

D

P ′

By using the fact that △P ′CB is isosceles:

̸ P ′CB =
180◦ − ̸ CP ′B

2
= 24◦

Finally,
̸ PCB = ̸ P ′CB − ̸ PCP ′ = 30◦ − 24◦ = 6◦.

Solution to Example 1.9.

A

B

C

D

170◦

C ′

10◦

60◦

Since ̸ CBD = 5◦, and ̸ CBA = 70◦, it seems like we can somehow make a 60◦ angle...

Reflect C over BD to C ′. BCDC ′ is a rhombus, and ̸ CBC ′ = 10◦. Therefore, C ′BA = 60◦.
But BC ′ = BC = AB! So, △ABC ′ is equilateral, and C ′A = AB = CD = C ′D.

Since ̸ DC ′A = 360◦ − 170◦ − 60◦ = 130◦, C ′AD = 25◦. It follows that ̸ BAD = ̸ C ′AB +
̸ C ′AD = 60◦ + 25◦ = 85◦.

Solution to Example 1.10.

Since OA = OB = OC = OD, by definition ABCD all lie on the same circle. Observe that
we have 6 isosceles triangles in the diagram. Label

̸ AOB = α, ̸ BOC = β, ̸ COD = γ, ̸ DOA = δ.

Note that α+ β + γ + δ = 360◦.

We are interested in comparing ̸ ABD and ̸ ACD. We write

̸ ABD = ̸ ABO + ̸ OBD =
180◦ − α

2
+

180◦ − β − γ

2
=

1

2
(360◦ − α− β − γ) =

1

2
δ
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B

A

C

D

α

β
γ

δ

In a similar fashion,

̸ ACD = ̸ ACO + ̸ OCD =
180◦ − α− β

2
+

180◦ − γ

2
+ =

1

2
(360◦ − α− β − γ) =

1

2
δ

Thus,
̸ ABD = ̸ ACD.

Now, to compare ̸ ABC and ̸ ADC, observe that

̸ ABC = ̸ OBA+ ̸ OBC =
180◦ − α

2
+

180◦ − β

2

̸ ADC = ̸ ODA+ ̸ ODC =
180◦ − δ

2
+

180◦ − γ

2

It follows that

̸ ABC + ̸ ADC =
720◦ − α− β − γ − δ

2
= 180◦.

So,
̸ ABC + ̸ ADC = 180◦

What is really nice about these two results is that they are independent of O. Furthermore
(though we won’t prove this), any of these conditions are enough to establish that the four points
A,B,C,D lie on the same circle!

So, we can actually say that

̸ ABC + ̸ ADC = 180◦ ⇐⇒ ̸ ABD = ̸ ACD

assuming the configuration is correct (A,B,C,D being in that order).

Now, we are able to bypass isosceles triangles altogether!
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Solution to Example 1.11.

Since ̸ ABD = ̸ ACD, the quadrilateral ABCD is cyclic. That means that ̸ ACB =
̸ ADB = 80◦.

See how quick that solution was? In some ways, the congruent condition is a pure “coinci-
dence” that forces everything to be nice.

If, say, ̸ ADB = 65◦ but ̸ ACD = 70◦, then we actually don’t have a definitive solution.
We can slide points around, and ̸ ACB change. Now, when ̸ ACD = 65◦ again, points still can
slide; however, ̸ ACD will remain fixed.

That is the power of the cyclic quadrilateral.

Solution to Example 1.12.

For this problem, it makes much more sense to work in arc measures. The first condition

tells us that ÃC = 2 · B̃D = 160◦. The second suggests that B̃C = C̃D. So,

B̃C + C̃D = B̃D = 80◦ =⇒ B̃C = C̃D = 40◦.

Then, we can draw a diagram, and all relations become clear.

120◦

40◦

40◦

A

B

CD

P

Since ABCD is cyclic,

̸ BCD = 180◦ − ̸ DAB = 180◦ − 1

2
B̃D = 140◦ =⇒ ̸ BCP = 70◦

Since P is on the angle bisector of ̸ BCD, symmetry, we have that

̸ CBP = ̸ CDP = ̸ ADC = 80◦

Moreover,
̸ BPC = 180◦ − ̸ CBP − ̸ BCP = 180◦ − 80◦ − 70◦ = 30◦.

Our final answer is ̸ BPD = 2 ·BPC = 60◦.
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2 Solutions to Section 2 Examples

Solution to Example 2.1.

This example starts off out chapter with a little bit of algebraic manipulation.

Let D be on AB such that ID ⊥ AB. Since ID ∥ EA ∥ FB, we have ̸ BID = ̸ BEA
and ̸ BDI = ̸ BAE by corresponding angles of parallel lines. So, by AA △BDI is similar to
△BAE. Likewise, △ADI ∼ △ABF .

Now, we know that corresponding sides of similar triangles are in equal ratios. Our strategy
is to use sides that either we need in our answer, sides that we already know, and sides that can
be algebraically manipulated in an equation.

ID

EA
=

BD

AB
and

ID

FB
=

AD

AB
.

Here, we want to solve for ID, we know EA = 20, FB = 30. Finally, it appears that we can
relate the two ratios on the right hand side of the equations.

BD

AB
+

AD

AB
=

AB

AB
= 1 =⇒ ID

20
+

ID

30
= 1

So, ID = 12. That was nice.

Solution to Example 2.2.

This time, the similar triangles are oriented not in the same direction, but oppositely. Since
AD ∥ BC, we have that ̸ BPE = ̸ PDA and ̸ PEB = ̸ PAD, by alternate interior angles.
(We also have ̸ APD = ̸ PEB).

Thus, by AA similarity we have △BPE ∼ △DPA, or

BP

PD
=

BE

DA
=

1

3
.

A similar argument indicates △BQF ∼ △DQA, and BQ/DQ = 3/2.

Now, let us write everything in a ratio to BD. We can use algebra to say

BP

BD
=

BP

BP +DP
=

1

1 + DP
BP

=
1

1 + 3
=

1

4
.

However, no one really thinks this way. It is much direct to think as follows: Take BP = k.
Then, DP = 3k, so BD = BP +DP = 4k, and BP/BD = 1/4.

Nevertheless, we can also find BQ/BD = 2/5, and again we have BP : PQ : QD = 5 : 3 : 12.

Solution to Example 2.3.

Our intuition is to construct a parallel line somewhere, so let’s see how it goes.

Construct line ℓ through C such that ℓ is parallel to AB, and let ℓ intersect AD at E. We
label in the most useful congruent angles.

̸ CAD = ̸ BAD = ̸ CED

9
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A

B

C

D

E

where the former comes from the angle-bisector condition and the later comes from parallel
lines. We have an isosceles triangle!

Now, using the most obvious pair of similar triangles formed by the parallel lines (there really
is only one pair), △ABD ∼ △ECD, and the fact that AC = CE, we get

AB

BD
=

EC

CD
=

AC

CD

and we are done!

Thus, we may say that in principle, the angle bisector theorem is just two similar triangles,
but with one “shifted” to form an angle bisector.

Solution to Example 2.4.

A

B

CE

T

D
X

It is not clear how BD,CD are related. We can, in a sense, say that BD and CD are
’parallel’. Once again, we need to introduce similar triangles via parallel lines. Let the line
through E parallel to BC intersect AD at X.

Now, XE is parallel to both BD,CD, so we have two pairs of similar triangles (hence our
construction is useful)

△AXE ∼ △ADC and △XET ∼ △DBT

10
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These similarities gives us

XE

BD
=

ET

BT
and

XE

CD
=

AX

AD

We use both equations to cancel EX, and obtain

CD

BD
=

ET

BT
· AD

AX
.

A

B

CE

T

D

X
11

1
4

Now, it is given that BT/ET = 4. To find AD/AX, it is convenient to assign values. we can
set XT = 1. Now, TD = 4, since

△XET ∼ DBT =⇒ TD

XT
=

BT

ET
= 4

We are also given that AT/TD = 3, so it follows that AT = 3 · 4 = 12, and AX = 11. Finally,

CD

BD
=

1

4
· 16
11

=
4

11

That was quite long. However, this problem purposely picked in a sense the “worse” given
ratios. Luckily, problems tend to give AE/EC or AE/AC, the later which is immediately equal
to AT/AD, to simplify calculations.

We will also develop more theory regarding this configuration in Section 4.

Solution to Example 2.5.

Now, we are given MB = MC, but there is no apparent way we can use this condition
directly. Furthermore, ̸ ANM = 90◦ doesn’t line up with any sides of a right triangle.

Therefore, let us extend DM to meet AB at E. By AAS we have that △BME ∼= △CMD,
which implies that BE = DC (here, BECD is a parallelogram)

Also, △ANE is a right triangle. However, recall that for a right triangle, the distance from
the right angle vertex to the midpoint of the hypotenuse is equal to the half the hypotenuse
length (consequence of Thales’s theorem)

But B is the midpoint of △ANE! So, it follows that

NB = BE = BA.

11
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Solution to Example 2.6.

This is another problem where everything should be nice, but we lack a way to force every-
thing to be equal. Here, the parallelogram trick is the way.

Take P ′ on the extension of AD such that DP ′ = DP . Then, since BD = DC, we have that
BPCP ′ is a parallelogram.

A

B CD

EF

P

P ′

Now, since BPCP ′ is a parallelogram, we know that BP ′ ∥ FP and CP ′ ∥ EP , and so

△AFP ∼ △ABP ′ and △AEP ∼ △ACP ′

Looking at ratios, we have
FP

BP ′ =
AP

AP
=

EP

CP ′

But BP ′ = CP and CP ′ = BP . Then,

FP

CP
=

EP

BP
=⇒ △EFP ∼ △BCP.

It follows that EF ∥ BC. That was neat. This is one of the few times we actually cleverly
manipulate lengths to prove angle conditions!

As a slight foreshadow, we will see this configuration again in Problem 2.8, and more
generally as part of Example 4.6.

Solution to Example 2.7.

Recall that in a cyclic quadrilateral, angles inscribing the same arc are congruent, and oppo-
site angles are supplementary.

Let us first consider when P is inside ω. Observe that

̸ ACD = ̸ ABD =
1

2
ÃD

Therefore, ̸ ACP = ̸ DBP . (we just changed the name of the angle, since P lies on both lines)

By similar reasoning,

̸ CAB = ̸ BDC =
1

2
C̃B

12
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P

C

DA

B

Here, ̸ CAP = ̸ BDP .

Thus, by AA similarity,
△ACP ∼ DBP

This is the heart of Power of a Point. Essentially, the five points of intersection of two lines and
a circle gives a pair similar triangles.

It follows that
CP

AP
=

BP

DP
=⇒ CP ·DP = AP ·BP

Observe that if we instead connected AD, CB, then we will find

△ADP ∼ CBP

which is also true! This formulation can also give the same Power of a Point expression.

P

C

D

A

B

Now, we turn our attention to the case that P is outside ω. This time,

̸ ACD + ̸ ABD = 180◦ and ̸ CAB + ̸ CDB = 180◦

where opposite angles are supplementary. But ̸ PAC and ̸ PCA are supplementary to ̸ CAB
and ̸ ACD, respectively. So,

̸ PCA = ̸ PBD and ̸ PAC = ̸ PDB.

13
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Again, with AA similarity, we have

△PCA ∼ △PBD =⇒ PA · PB = PC · PD.

It is also true that △PAD ∼ △PCB, and our Power of a Point statement is also the same.

Since PA · PB is constant for any chosen line m, we can write

PA · PB = Powerω(P ),

where Powerω(P ) is only a function of P and ω.

Finally, when line m is a diameter, and P is inside the circle, we write

Powerω(P ) = PA · PB = (R−OP ) · (R+OP ) = R2 −OP 2

We are therefore able to extract the distance OP . Thus, if we ever needed to find OP , we
can instead use R, and PC · PD for any other (convenient) line.

Solution to Example 2.8.

First, we need to make the observation that P is the circumcenter of △ABC.

It is easier to see this by first fixing isosceles △APB. Then, there is a circle with center P

that passes through A,B. ̸ APB is a center angle with ̸ APB = ÃB. As ̸ ACB = 1
2 ÃB, it

forces C to be on the same circle.

To set up Power of a Point, extend BD to meet ⊙ABC (the circumcircle of ABC) at E. BE
is a diameter, so BE = 6 and DE = 5.

Now, we use power of a point:

AD · CD = ED ·BD = 5 · 1 = 5

Make sure that you always set Power of a Point with 4 points on the circle! Sometimes people
have the tendency to forget, if the fourth point isn’t drawn in.

Solution to Example 2.9.

Once again (notice that this is becoming a theme of this section), we want to construct two
pairs of similar triangles while only drawing one new point/line. Luckily, the numerous amount
of given congruent angles allows for this to happen.

Let X be the intersection of the diagonals. Let us take Y on BD with ̸ BAC = ̸ DAY .
Note that this also implies ̸ BAY = ̸ DAX.

Recall that ̸ BCA = ̸ Y DA and ̸ ABY = ̸ ACD. Therefore,

△ABC ∼ △AYD and △ABY ∼ △ACD

This looks good enough. Now, we choose two clever pairs of side lengths to extract the
similarity. BY and Y D is a good choice, since BY + Y D = BD, a desired quantity. Also, we
don’t want AY , since we don’t know any way it relates to something else.

BC

AC
=

Y D

AD
and

BY

AB
=

CD

AD

14
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B

A

C

D

X

Y

Adding the two equations together

BD = BY + Y D =
AD ·BC +AB ·DC

AC
or AC ·BD = AD ·BC +AB ·DC

The flipping the angle construction was nice, which allowed convenient similar triangles to
be formed.

Solution to Example 2.10.

We set up Ptolemey’s Theorem:

AB · CD +AC ·BD = AD ·BC

Note that since D lies on the angle bisector of BAC, D must be the midpoint of B̃C. So,
BD = CD. Rearranging the expression and plugging in values give

7 · CD + 8 · CD = AD · 9 =⇒ AD

CD
=

5

3

Solution to Example 2.11.

This time, we need to use similar triangle to greater depth, and utilize some clever algebra
tricks to make things nice.

w = x
d

b
and y = x

c

a

w = z
a

c
and y = z

b

d

We want a linear relation between w+ y and x+ z, so lets first write x and z individually in
terms of w + y.

x =
w + y
d
b + c

a

and z =
w + y
a
c + b

d

15
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B

A

C

D

b

c

d

a

P

w

z

y

x

Thus, we can combine the two equations to get

BD

AC
=

x+ z

w + y

=
1

a
c + b

d

+
1

d
b + c

a

=
cd

bc+ ad
+

ab

bc+ ad

=
ab+ cd

ad+ bc

Now, we can instead substitute this back into Ptolemey’s.

AC2 =
(ac+ bd) · (ad+ bc)

(ab+ cd)

Now, while I do think that this is one of the very few longer results worth remembering, it
is quite confusing to remember which goes where. We may remember the bottom term as the
term with two side length pairs on the same side of AC.

Solution to Example 2.12.

It is given that X,O, Y, Z are cyclic (on circle C2). Furthermore, we must have XO = OY =
r. Then, the most straightforward approach is to use the stronger form of Ptolemy’s theorem.

OZ2 =
(XZ ·OY +XO · Y Z) (XZ · ZY +XO ·OY )

XZ ·XO + Y Z · Y O

112 =
20r ·

(
r2 + 13 · 7

)
20r

So, it turns out that r =
√
30.

16
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Solution to Example 2.13.

Look at △ADB and △ADC separately. What special relations exist between the two trian-
gles?

One might naively say AD = AD, obviously. However, this really isn’t important at all,
since we have the power of similarity. We can scale things all we want. What really is special is
that ̸ ADB + ̸ ADC = 180◦. This is necessary for the two triangles to form a bigger triangle.

Doesn’t supplementary angles remind us of something? Yes, we can actually form a cyclic
quadrilateral!

Let us rotate △ADB about point A through an angle of ̸ CAD, and also scaled by AC/AB.
Here, B′ overlaps with C, and we have a new D′.

B C

A

D

d b
c

m n

D′
b
cd

b
cm

Now, since ̸ AD′B′ = ̸ ADB, we have a cyclic quadrilateral AD′CD, with lengths

AD′ =
b

c
d,D′C =

b

c
m,CD = n,DA = d,AC = b.

Now, we finish with the stronger form of Ptolemey’s.

b2 =

(
b
cdn+ b

cmd
)
·
(
b
cd

2 + b
cmn

)Ä(
b
c

)2
md+ dn

äÇÅ
b

c

ã2
md+ dn

å
· b2 =

Å
b

c

ã2
· d · (m+ n) · (d2 +mn)

b2m+ c2n = d2a+ amn

This result is frequently used in computational problems.

17



Ideas and Insight in Synthetic Geometry: Solution to Examples 18

3 Solutions to Section 3 Examples

Solution to Example 3.1.

A B

C

D

7 8

F

1

Unlike proportionality, using the Pythagorean Theorem requires enough information. Typi-
cally, the problem should be solvable if it feels well defined, and enough lengths are given.

Here, we know enough lengths to start with, so the rest should just come naturally. Let the
foot of altitude from C to AB be F . By the Pythagorean Theorem, we have

CF 2 +BF 2 = CD2 and CF 2 + FD2 = CD2

We can solve for CF , though we don’t need to. Subtract the two equations, and we have

DF 2 −BF 2 = CD2 − CB2

DF 2 = 82 − 72 + 12

DF = 4

It follows that BD = DF −BF = 3.

Solution to Example 3.2.

A B

CD X Y

E

18
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Drop foots of altitude from A,B to X,Y on CD, respectively. Since AE ⊥ EC, we have

AE2 = AC2 − EC2

Since we are given that EC = BC, we have

AE2 = AC2 −BC2

This is nice. Our answer no longer depends on E. We might be worried that we can’t find AC
or BC, because we lack any information about the height of the trapezoid. However, it turns
out that we don’t need the height, since it cancels out.

AC2 = AX2 + CX2 and BC2 = BX2 + CY 2

Here, AX = BX, and CX = 11/2, CY = 5/2. Then,

AE2 = AX2 + CX2 −BY 2 − CY 2 = CX2 − CY 2 = (11/2)
2 − (5/2)

2
= 24.

Our answer is AE = 2
√
6.

This example is typical of a relatively straightforward problem. The first part is the setup,
and use the given conditions of the problem. After that, we get our answer in terms of some
lengths that are easily computable. We finish with computation.

Solution to Example 3.3.

O

B
C

A

6

2Y

X

Let X,Y be the foots of altitude from O to AB,BC, respectively. OXBY is a rectangle.
Denote OX = x,OY = y.

By the construction of a circle, OA = OC =
√
50. Also, △OXA and △OY C are right

triangles.

x2 + (6− y)2 = 50

(x+ 2)2 + y2 = 50

This is enough to solve for x, y individually. We find that x = 5, y = 1, and OB =
√
x2 + y2 =√

26.

19



Ideas and Insight in Synthetic Geometry: Solution to Examples 20

Solution to Example 3.4.

This problem involves a similar radius setep, though we have to be careful about configuration
issues: whether the two chords are on the same side of the circle or not.

Let us suppose that the distances from the chord to the center are x, y.

x =
√
r2 − 52 and y =

√
r2 − 72

We know that either x+ y = 6 or x− y = 6. We add the two equations to get√
r2 − 52 ±

√
r2 − 72 = 6

where + corresponds to opposite of center, and − corresponds to same side of center.Ä√
r2 − 52

ä2
=
Ä
6∓

√
r2 − 72

ä2
r2 − 52 = 36∓ 12

√
r2 − 142 + r2 − 72

0 = 12∓ 12
√
r2 − 72

The r2 terms conveniently cancel (as usual). We end up needing − of ∓, which means that it
is + initially, corresponding to the two chords being opposite of center. Also, r =

√
50, x = 5,

y = 1.

We are interested in a chord in-between the two, so the distance from the chord to the center
must be 2. It follows that the chord length is 2

√
50− 4 = 2

√
46.

Solution to Example 3.5.

A B

CD

O

P

T

A B

CD

O

P

T

1

1 1

1

r

r

rx

x

x

The key to this problem is simply to label all known lengths and relations. One key obser-
vation is that O, T, P are collinear. Furthermore, we use the tangent segments are congruent
property to deduce that the three tangents from A all have the same length x.

Now, consider the right triangle with hypotenuse OP and legs parallel to ABCD. We deduce
that

(1− r)
2
+ (x− r)

2
= (1 + r)

2

Looking at AB, we have x+ r = 2. Thus, we may substitute and solve for r, in which

r =
3±

√
5

2
=⇒ r =

3−
√
5

2
.

20



Ideas and Insight in Synthetic Geometry: Solution to Examples 21

Solution to Example 3.6.

A

B

X Y

C

Z

Let the unknown radius be r. Drop perpendiculars from A,B,C down toX,Y, Z, respectively.
By the Pythagorean theorem on the three right triangles with hypotenuse being the line that
joins two triangle centers,

XY 2 + (4− 1)2 = (4 + 1)2

XZ2 + (1− r)2 = (1 + r)2

ZY 2 + (4− r)4 = (4 + r)2

It is straightforward to solve individually (as square terms cancel) XY = 4, XZ =
√
4r, ZY =√

16r. Since XY = XZ + ZY , we find that r = 4
9 .

Solution to Example 3.7.

Without loss of generality, let AD = 10, BC = 14. Drop altitudes from C,D down to line
AB, and let the foot of altitudes be E,F , respectively.

Setting the height of the trapezoid to be h, we have CE = DF = h. So,

AF =
√

AD2 −DF 2 =
√
102 − h2 and EB =

√
CB2 − CE2 =

√
142 − h2

To relate the two, we use AF + FE + EB = 33, or√
102 − h2 + 21 +

√
142 − h2 = 33.

Once again, this actually isn’t too bad to solve, since the square terms cancel.

142 − h2 = 122 − 24
√
102 − h2 + 102 − h2 =⇒ h = 4

√
6

Plugging h back in, we have AF = 2, EB = 10. To form a diagonal, we can take the altitude
h, plus base AE or FB. Here, the shorter diagonal is desired, which is

AC =
√
AE2 + CE2 =

…
232 +

Ä
4
√
6
ä2

= 25.
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B C

A

c b

D

ha

xa− x

Solution to Example 3.8.

Just some algebra.

b2 − x2 = c2 − (a− x)2 = h2
a

b2 = c2 − a2 + 2ax

b2 + a2 − c2

2a
= x

We continue to find ha.

h2
a = b2 − x2

=
4a2b2 −

(
b2 + a2 − c2

)2
4a2

=

(
2ab+ b2 + a2 − c2

) (
2ab− b2 − a2 + c2

)
4a2

=

(
(a+ b)2 − c2

) (
−(a− b)2 + c2

)
4a2

=
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

4a2

and we are done! We used differences of squares to factorize the expression multiple times.

Now, you might have been bothered with the 4a2 on the bottom. Wouldn’t everything be
nicer if we multiplied it to the other side of the equation? Indeed, we will see what happens
soon.

Solution to Example 3.9.

By Heron’s formula, we have

4 · 8 ·AH =
»
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c) =

√
24 · 10 · 6 · 8

So, AH = 3
√
5, and BH = 2, HC = 6.

Using the angle bisector theorem on △ABH and △ACH, we find

AP

PH
=

7

2
=⇒ AP

AH
=

7

9
and

AQ

QH
=

9

6
=⇒ AQ

AH
=

3

5
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Finally, we obtain

QP = AH ·
Å
AP

AH
− AQ

AH

ã
= 3

√
5

Å
7

9
− 3

5

ã
=

8
√
5

15
.

Solution to Example 3.10.

B C

A

H

ha

D

d b
c

m n

All we need to do is write the critical Pythagorean Theorem.

AD2 = HA2 +HD2 = AC2 −HC2 +HD2

Now, recall from Example 3.8 that

HC =
b2 + a2 − c2

2a

The rest of the algebraic manipulation is straightforward. (Note: We didn’t write out the
full Heron’s formula, but instead left h2

a = b2 − x2 to simplify the algebra.)

AT 2 = HA2 +HD2 = AC2 −HC2 +HD2

d2 = b2 −
Å
b2 + a2 − c2

2a

ã2
+

Å
b2 + a2 − c2

2a
− n

ã2
= b2 + n2 − 2n

b2 + a2 − c2

2a

d2a = b2a+ n2a− n(b2 + a2 − c2)

d2a = n2c+ b2(a− n)− an(a− n)

d2a+ anm = b2m+ c2n

This agrees with what we found in Example 2.13

Solution to Example 3.11.

Let D,E be the foot of altitudes from A,B, to BC,AC, respectively. Obviously, ̸ ADC =
̸ BEC = 90◦, and ̸ DCA = ̸ ECB = ̸ C. Therefore, △ADC ∼ △BEC.

Then,
AD

AC
=

BE

BC
=⇒ AD ·BC = BE ·AC =⇒ a · ha = b · hb

23
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Solution to Example 3.12.

B C

A

O

E

M

Let E be the foot from B to AC, and M be the midpoint of BC. By properties of inscribed
angles in a circle, we have ̸ BAC = 1

2
̸ BOC. But ̸ BOM = 1

2
̸ BOC, so ̸ BAC = ̸ BOM .

Also, ̸ OMB = ̸ AEB = 90◦, so △OMB ∼ △AEB. Thus,

OB

BM
=

AB

BE
=⇒ R = OB =

AB

BE
· BC

2
=

c

(2A/b)
· a
2
=

abc

4A

Solution to Example 3.13.

Have the incircle touch BC,CA,AB at X,Y, Z, respectively. We have derived the lengths
of segments AY, Y C,CX,XB,BZ,ZA in problem 1.7. However, we may re-derive it with the
equal tangents property.

Since AY,AZ are tangents from A to the incircle, AY = AZ. Define AY = AZ = ℓa, and
similarly define ℓb, ℓc.

ℓa + ℓb = c

ℓb + ℓc = a

ℓc + ℓa = b

Solving the system yields

ℓa =
−a+ b+ c

2
, ℓb =

a− cb+ c

2
, ℓc =

a+ b− c

2
,

which is handy to know.

Now, since ̸ ICX = ̸ C/2, we are motivated to draw similar triangles. Let AD be an
altitude, and have AD intersect IC at P .

Since IC is an angle bisector, we use the angle bisector theorem,

PD

PA
=

CD

CA
=⇒ PD

AD
=

CD

CD +AC

Now, we express PD both using similar triangles to IX and with the angle bisector theorem.

AD · CD

CD +AC
= PD = r · CD

XC
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B C

A

I

X

Y

Z

r

r
r

B C

A

I

XD

P

r

We equate the two sides and obtain

r · CD

XC
= AD · CD

CD +AC

r · (CD +AC) = AD ·XC

r ·
Å
b+

a2 + b2 − c2

2a

ã
= ha ·

Å
a+ b− c

2

ã
r · (a+ b+ c)(a+ b− c)

2a
= ha ·

Å
a+ b− c

2

ã
r(a+ b+ c) = aha

rs = A

where a, b, c terms cancel nicely, and we are left only with the semiperimeter and area.

Now, if we are allowed to use the additive property of area, we can consider the triangle areas
[AIB], [BIC], [CIB]. Observe that △BIC has altitude r and base a, so [AIB] = ra/2. Similar
relations hold for the other two triangles. Then, adding the areas give

A = [ABC] = [AIB] + [BIC] + [CIA] =
rc

2
+

ra

2
+

rb

2
= rs

Solution to Example 3.14.

With our tools, this problem becomes very straightforward.

IN = r =

√
s(s− a)(s− b)(s− c)

s
=

…
12 · 13 · 14

39
= 2

√
14.

Also, BN = (25 + 27− 26)/2 = 13, so

BI =

…Ä
2
√
14
ä2

+ 132 = 15.

Solution to Example 3.15. Recall that for a rhombus, AC ⊥ BD. Furthermore,

[ABC] = [ABD] = (AC ·BD)/4.

We have

R△ABD =
AD ·AB ·BD

4[ABD]
and R△ABC =

AB ·BC ·AC

4[ABC]
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12.5

25
=

R△ABD

R△ABC
=

BD

AC

Letting BD = x, we get AC = 2x and the side length of the rhombus

AB = BC = CD = DA =

…(x
2

)2

+ x2 =

√
5

2
x.

Therefore, we can go back and solve for x.

12.5 = R△ABD =

Ä√
5
2 x
ä
·
Ä√

5
2 x
ä
· x

x · 2x
=⇒ x = 20

Our final answer is

[ABCD] = 2[ABD] = 2 · x · 2x
4

= 400.
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4 Solutions to Section 4 Examples

Solution to Example 4.1.

It is perhaps reasonable to try to compute the are ratio [ADE]/[ABC] first, since we are
comfortable with triangle areas.

Let us drop altitudes from E,C to AB, and call the foots X,Y , respectively. The nice thing
is that we have similar right triangles - △AXE ∼ △AY C which is enough to solve the problem.

B C

A

D

E

Y

X

[ADE]

[ABC]
=

AD · EX

AB · CY
=

AD

AB
· AE

AC
=

19

75

This is nice and generalizable. We basically found that for two triangles sharing an angle,
the ratio of the areas is simply the ratio of the product of adjacent side lengths.

Our answer to the problem is

[BCED]

[ABC]
= 1− [ADE]

[ABC]
=

56

75
=⇒ [ADE]

[BCED]
=

16

56
.

Solution to Example 4.2.

For this example, we will need our result from the previous example, along with the fact that
area is additive.

[BDF ] + [FAB] + [BCD] + [DEF ]

[ACE]
= 1

The ratios for the other three triangles and the larger △ACE can be found easily. In fact,
they are all the same.

[FAB]

[ACE]
=

FA ·AB

AC ·AE
=

3

16
, likewise

[BCD]

[ACE]
=

3

16
and

[DEF ]

[ACE]
=

3

16

So, we get
[BDF ]

[ACE]
+ 3 · 3

16
= 1 =⇒ [BDF ]

[ACE]
=

7

16
.
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A B

C

D
E

P

X

Solution to Example 4.3.

We use the same trick pioneered in Example 2.4. Construct line ℓ through D parallel to
AC, and let ℓ intersect BE at X. Due to the parallel condition,

△AEP ∼ △DXP and △BXD ∼ △BEC.

Our strategy is to compare XD to AE and EC.

XD

AE
=

DP

AP
and

XD

EC
=

BD

BC
.

Eliminating the XD term gives

AE

EC
=

AP

DP

BD

BC
=⇒ AP

AD
· BD

BC
· EC

CA
= 1,

as desired.

This formula is admittedly a bit long, and not that straightforward to use. I personally
recommend sticking with the parallel line trick for numerical problems, especially since the
parallel line trick can adapt to other possible inputs (such as the conditions in Example 2.4).

However, this theorem’s converse is also true, so it can also be used to prove that the three
cevians are collinear. Finally, many text gives the equation with a −1, to indicate directed
lengths. As stated in the introduction, we won’t bother with configurations here.

Solution to Example 4.4.

A B

C

F

D
E

P

XY

28



Ideas and Insight in Synthetic Geometry: Solution to Examples 29

Once again, we will use the parallel line trick. Hopefully it starts to becomes obvious where
to draw the line. Take line ℓ through C parallel to AB, and let the extensions of AD,BE meet
ℓ at X,Y , respectively. Now,

△ABD ∼ △XDC, △ABE ∼ △CY E, and moreover △ABP ∼ △CPY.

This time, AB is everywhere, so let us write all ratios in terms of AB.

CY

AB
=

CE

AE
,
CX

AB
=

CD

DB
and

XY

AB
=

CP

PF
.

However, we can use the fact that CY + CX = XY . Thus,

CE

AE
+

CD

DB
=

CP

PF
.

Solution to Example 4.5.

Note that △PRQ ∼ CBA. It is enough to find the scale factor between △PQR and △ABC
through PQ/CA or PR/CB. Then, we square the length ratio to find the area ratio, as we
found in Example 4.1.

By Menelaus’s, we have

CE

EA
· AP

PD
· DB

BC
=

1

3
· AP

PD
· 5
7
= 1 =⇒ AP

PD
=

21

5
.

After recognizing △APR ∼ △ADB, and some algebraic manipulation, we get

AP

AD
=

PR

DB
=

21

26
=⇒ PR

CB
=

PR

BD
· BD

CB
=

21

26
· 5
7
=

15

26
.

So, it follows that
[PRQ]

[CBA]
=

Å
PR

BC

ã2
=

Å
15

26

ã2
=

225

676
.

Solution to Example 4.6.

A B

C

F

D
E

P

Let us take Ka = [BPC],Kb = [CPA],Kc = [APB].
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Consider the areas of △AFC and △BFC. Observe that

[AFC]

[BFC]
=

AF · hc

FB · hc
=

AF

FB
.

What happened? As both triangles have the same altitude hc, the altitudes canceled and we are
left with the base ratio.

The same can be applied to △APF and △BFP . We have

[AFP ]

[BFP ]
=

AF

FB
.

A cool trick to know when dealing with ratios is that

a

b
=

c

d
= k =⇒ a± c

b± d
= k.

Therefore, we may say that

[AFC]− [AFP ]

[BFC]− [BFP ]
=

Kb

Ka
=

AF

FB
.

We are actually done. Since the above also holds for the other two side ratios. Indeed,

Kc

Kb
=

BD

DC
and

Ka

Kc
=

CE

EA

Multiplying the three equations yield

AF

FB
· BD

DC
· CE

EA
=

Kb

Ka

Kc

Kb

Ka

Kc
= 1,

which is Ceva’s theorem.

This method is powerful, since we related the side ratios with “more general” areas of the
triangle. The K’s we defined are symmetric, so we only have three such K’s, instead of six
lengths.

Solution to Example 4.7.

It is likely that we won’t be able to solve anything directly. However, maybe we can find
some nice relations between the two expressions, by considering K’s.

Recall the ratio trick in Example 4.6. Notice that

AO

OA′ =
[COA]

[COA′]
=

[BOA]

[BOA′]
=⇒ AO

OA′ =
[COA] + [BOA]

[COA′] + [BOA′]
=

Kb +Kc

Ka

It remains to sum the other two up, and

AO

OA′ +
BO

OB′ +
CO

OC ′ =
Kb +Kc

Ka
+

Kc +Ka

Kb
+

Ka +Kb

Kc

=
K2

b (Ka +Kc) +K2
c (Ka +Kb) +K2

a(Kb +Kc)

KaKbKc

=
K2

b (Ka +Kc) +K2
c (Ka +Kb) +K2

a(Kb +Kc) + 2KaKbKc

KaKbKc
− 2

=
(Ka +Kb)(Kb +Kc)(Kc +Ka)

KaKbKc
− 2

=
AO

OA′ ·
BO

OB′ ·
CO

OC ′ − 2
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where a clever factoring trick was used. Though this isn’t as clean as Ceva’s theorem, it is still
a nice result.

Back to our problem, we simply plug in the two expressions, and our answer then is 92+2 =
94.

Solution to Example 4.8. Once again, we want to work with ratios, though nothing is quite
given. Here, we must note that O is special because OA = OB = OC, by definition of the
circumcenter. Therefore, we can throw an R on each term!

1

AD
+

1

BE
+

1

CF
=

1

R

Å
AO

AD
+

BO

BE
+

CO

CF

ã
=

1

R

Å
3− OD

AD
− OE

BE
− OF

CF

ã
Now what? Look at OD/AD. Suppose that we drop altitudes ha, ho from A,O to BC. We

have that
OD

AD
=

ho

ha
=

ho ·BC

ha ·BC
=

Ka

[ABC]

This shows us that the ratio of two triangles that share the same base not only has area
ratio equal to height ratio, but also a “slanted” height ratio, since we can construct similar
right triangles to make things right (kind of like in Example 4.1, though here angles are
supplementary instead of congruent).

1

AD
+

1

BE
+

1

CF
=

1

R

Å
3− Ka

[ABC]
− Kb

[ABC]
− Kc

[ABC]

ã
=

1

R
(3− 1) =

2

R

So, it remains to find R. We have

R =
9 · 10 · 11
4[ABC]

=
9 · 10 · 11

4
√
15 · 4 · 5 · 6

=
33

4
√
2

=⇒ 2

R
=

8
√
2

33
.

Solution to Example 4.9.

Let us set up AK = α,BK = β. By the parallel condition, we have △ABK ∼ CDK, so
KC = 4

3α, KD = 4
3β.

Now, by noticing that △AKD shares heights with △AKB we have

[AKD]

[AKB]
=

DK · dA,BD

BK · dA,BK
=

DK

BK
=

4

3
,

where dA,BD - the altitude from A to BD - cancels. Therefore, the area ratio is simply the ratio
of the base lengths.

Similarly, we have
[AKD]

[CKD]
=

AK · dD,AC

CK · dD,AC
=

AK

CK
=

3

4
.

So, [AKB] = 18, [CKD] = 32. Finally, △BKC has a same interior angle as △AKD, which
makes (using the results of Example 4.1)

[AKD]

[BKC]
=

AK ·DK

BK · CK
=

α · 4
3β

4
3α · β

= 1
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Our final answer is 24 + 24 + 18 + 32 = 98.

As a corollary, we found that in a trapezoid, [AKD] = [BKC]. A slicker way to show this is
to realize that [ACD] = [BCD], and then subtract [KCD].

Solution to Example 4.10.

3
7

7

xy

A B

P

D

E

C

Let us assign letters A,B,C,D,E, P , as indicated. Draw CP , and let [DCP ] = x, [ECP ] = y.

Consider AP/PD, which corresponds to two different pairs of area ratios, as we look on both
sides of the line.

AP

PD
=

[ABP ]

[PBD]
=

7

7
=

[ACP ]

[PCD]
=

3 + y

x
.

Likewise for BP/PE, we get

BP

PE
=

[BAP ]

[PAE]
=

7

3
=

[BCP ]

[PCE]
=

7 + x

y
.

Thus, we have a system of linear equations. This solves for

x =
15

2
, y =

21

2
=⇒ [EPDC] = 18.

Solution to Example 4.11.

The key to these problems is to split areas up cleverly, and prove that each case is equal.
Here, the most logical choice is to construct P on Y Z such that BP ⊥ Y Z. Now, we try to
show that [ZQPA] = [ABV U ].

We are familiar with dealing with triangles, so we split the rectangle/square in half. Then,
we try to find another triangle of equal area.

[ZQPA]

2
= [ZPA] = [ZBA]

[ABV U ]

2
= [ABU ] = [ACU ]

Now, observe that AC = AU,AZ = AB by construction of squares. Furthermore, ̸ ZAB =
90◦ + ̸ CAB = ̸ CAU . Thus,

△ZAB ∼= △CAU and hence [ZAB] = [CAU ].
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A B

C

U V

W

X

Y

Z

P

Q

This implies that the area of the rectangle and the square is equal. By repeating this process
to the other side of the triangle, we get [Y QPC] = [BCXW ]. So, it follows that

[ABV U ] + [BCXW ] = [ZQPA] + [Y QPC] = [ACZY ].

Solution to Example 4.12.

To use the circumcenter condition, let X,Y be the altitude from O to AC,BC, respectively.
We have OX ∥ DR, OY ∥ DW , so this prompts us to slide some areas.

A

B

CD

O

R

W

X

Y
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The natural attempt is to break [CROW ] = [CXOY ] + [XOR] + [Y OW ]. Note that by our
parallel construction,

[XOR] = [XOD] and [Y OW ] = [Y OD].

Then, [CROW ] = [CXOY ] + [XOD] + [Y OD] = [CXDY ]. O conveniently vanishes from
our equations!

We are not done yet. Recall that X,Y are midpoints of AC,CB. To use this, we break up
the area again with [CXDY ] = [CXD] + [CY D].

It is also true that

[CXD] =
1

2
[CAD] and [CY D] =

1

2
[CBD],

hence [CXDY ] has half the of [ABC].

To find [ABC], we can directly use Heron’s, and obtain

[CROW ] =
1

2
[ABC] = 126.
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5 Solutions to Section 5 Examples

Solution to Example 5.1.

Despite being not a relatively complicated problem, it is quite easy to make computation
errors. So, let’s be careful.

We first rewrite the condition in “nicer” angles. We know that BD ∥ AE ∥ HG by symmetry,
so

̸ ABD = ̸ AHG+ 12◦ ⇐⇒ ̸ BAE = ̸ HAE − 12◦.

Now, let us consider the measures of the arcs. Let the arc measures be ÃB = x, ÂI = y. We
are also given that all small arcs on the bigger arc have the same measure.

By properties of inscribed angles in circles, we note

̸ BAE =
1

2
B̃E =

3

2
x and ̸ HAE =

1

2
H̄E =

3

2
y.

So, it follows that y = x+ 8◦.

C

GH

I

A

F

E

B D

Now, we need to use the fact that C is the center of the bottom arc.

̸ ACE = ÃEbottom = 5y

Looking back at the upper arc,

̸ CAE = ̸ AEC = ÃC = 2x.

By using ̸ ACE + 2 ̸ CAE = 180◦, we arrive at

5y + 2 · 2x = 180◦ =⇒ x = 20◦, y = 28◦.

Hence, we can easily compute ̸ BAG.

̸ BAG = ̸ BAE + ̸ EAG =
3

2
x+

2

2
y = 58◦.

Solution to Example 5.2.

We first need to note an important fact about tangent lines, which we slightly hinted back
in Problem 2.8.

Suppose △ABC is circumscribed by circle ω. Now, let P be on ray CB so that PA be
tangent to ω at A. Recall the property of circles that angles inscribing the same arc have the
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AP

B

C

same measure. Now, ÃB is obviously inscribed by ̸ CAB. However, since PA is tangent, we

should also have (intuitively) ̸ PAB inscribing ÃB. This implies that ̸ PAB = ̸ ACB.

Another way to think about this is through Power of a Point. Imagine line ℓ through P
intersecting ω at A,A′. We have PB · PC = PA · PA′. In the limit that ℓ becomes tangent,
A = A′, and then PB · PC = PA · PA = PA2 should still hold. This rearranges to PB/PA =
PA/PC, which thereby suggests that △PBA ∼ △PAC.

Of course, both views really arrive at the same conclusion. For sake of this problem, lengths
is what we need.

Returning to the problem, we note that BD is tangent to ω1, so

△DEB = △DBA and
EB

ED
=

BD

BA
.

Now, BA is also tangent to ω2. Taking the power of a point for B with respect to ω2, we have

BA2 = BD ·BC = 3 · 16 = 48 =⇒ BA = 4
√
3

Therefore, BD/BA = 4
√
3/3.

Solution to Example 5.3.

First, we need to observe thatKLMN is cyclic with diameterKN , since ̸ KLN = ̸ KMN =
90◦.

K N

L

M

O

The key to this problem is finding the right pair of similar triangles, which isn’t too hard
if we start labeling congruent angles. We have ̸ LMK = ̸ LNK by the cyclic condition.
Furthermore, ̸ LNK = 90◦ − ̸ LKN = ̸ KLO, which comes from the two right triangles.
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So, ̸ LMK = ̸ KLO, which means that by AA,

△KLO ∼ △KLM.

We finish with ratios:
KL

KM
=

KO

KL
=⇒ KM =

282

8
= 98.

Our answer is OM = 90.

Solution to Example 5.4.

It is not hard to compute this directly, if we drop a bunch of perpendiculars. However,
there is a much slicker solution involving symmetry. Construct G,H such that AG = CH = 5,
DG = BH = 12.

Now, the four triangles △ABE,BCH,CDF,DAG are congruent. Moreover, G,A,E and
symmetric variations are collinear, since ̸ EAB + ̸ BAD + ̸ DAG = ̸ EAB + 90◦ + ̸ ABE =
180◦.

BA

D C

E

F

H

G

Therefore, GEHF is a square with side lengths 12 + 5 = 17. Then, EF , the diagonal, must
have length 17

√
2.

Solution to Example 5.5.

See that there is a 45◦ angle in the problem. That isn’t only used to make our computation
easier, but to allow for symmetry.

Rotate E 90◦ about O to E′ onto BC. By symmetry of the square, AE = BE′. Also,
△OFE ∼= OFE′, since ̸ FOE = ̸ FOE′ = 45◦, and OE = OE′.

Now, the congruence condition gives us FE′ = FE = 400, which is enough to finish. Let
BF = x, then BE′ = AE = 500− x. We have

FB2 +BE′2 = FE′2 or x2 + (500− x)2 = 4002

Solving gives BF = x = 250 + 50
√
7, as we take the larger solution.
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A B

CD

O

FE

E′

45◦45◦

Solution to Example 5.6.

It is quite unclear how to approach the problem. All points P are defined “relative” to
another, so we don’t have anywhere to start. Fortunately, we take make use of the symmetry of
the problem, and demand nice things to happen.

Suppose let us translate P1 onto ω2, keeping the same “angle” with respect to the center of
the circles. Of course, O1O2P

′
1P1 is a parallelogram, by construction. However, we can use the

symmetry of the problem to demand that

̸ P2O2P
′
1 = 120◦.

ω1

ω2ω3
O2O3

O1

P1

P2

P3

P ′
1120◦

It turns out that that is all we need! We know that P1P2 ⊥ P1P2, O1P1 ∥ O2P
′
1, and

̸ P1P2O2 = 30◦. It makes sense to extract this part of the figure out, where we can more clearly
visualize.

We also drop the perpendicular from O2 to P1P2, with foot atX. Now, △XP2O2 is a 30-60-90
triangle, and XP2 = 2

√
3, XO2 = 2. We also had O1O2 = P1P

′
1 = 8 and O1P1 = O2P

′
1 = 4.
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O2 P ′
1

P2

P1O1

8

4

8

4

2
X

2
√
3

To find P1P2, we need P1X, and with the Pythagorean Theorem

P1X =
»

P1P ′
1
2 −XP ′

1
2 =

√
82 − 62 = 2

√
7

Finally, P1P2 = 2
√
7 + 2

√
3, and the area of equilateral △P1P2P3 is

√
3

4

Ä
2
√
7 + 2

√
3
ä2

=
√
300 +

√
252

Solution to Example 5.7.

Let BE,CF intersect at H. It suffices to show that ̸ BAH = 90◦ − ̸ B, so H,D will be
collinear. The two altitudes gives us two nice cyclic quadrilaterals.

̸ BFC = ̸ BEC = 90◦ implies BFEC is cyclic. Also, ̸ AFH = ̸ AEH implies AFHE is
cyclic.

A

B C

E

F

H
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The rest is straightforward, as we just switch to the other angle in the cyclic quadrilateral
inscribing the same arc (there is only one). Letting BFEC = ω1, AFHE = ω2:

̸ FAH
ω2= ̸ FEH

ω1= FCB

However, ̸ FCB = 90− ̸ B, and then so is ̸ FCB. Therefore, H must lie on the altitude of A,
as desired.

As an important corollary, we can also note that △AEF ∼ △ABC, since ̸ ABC = 180◦ −
̸ FEC = ̸ AEF .

Solution to Example 5.8.

First, we have a 13-14-15 triangle. It is well-known that the altitude to the 14 side is 12.
Indeed, we can see through Heron’s that

A =
√
21 · 6 · 7 · 8 = 84 =

14 · 12
2

.

Furthermore, note that √
132 − 122 = 5 and

√
152 − 122 = 9

(Indeed, the 13-14-15 triangle can be decomposed into a 5-12-13 triangle and a 9-12-15 triangle
by the altitude)

Looking at △ADC, it is clear that ̸ ADE = ̸ C, and △ADE ∼ △ACD. Also, DE is the
altitude, which we can easily compute as DE = 9 · 12/15.

Since ̸ ADB = ̸ AFB = 90◦, we immediately note that AFDB is cyclic. Remember that
̸ ADF = ̸ C, so by congruent angles in a cyclic quadrilaterals we have

̸ ABF = ̸ ADF = ̸ C.

Now, since ̸ ABF = ̸ ACD and ̸ AFB = ̸ ADC, we have

△ABF ∼ △ACD.

Now, we are able to compute both AF and AE with ratios, and hence EF by Pythagorean
Theorem.

AF =
AD

AC
·AB and AE =

AD2

AC
.

EF =
√
AF 2 −AE2 =

AD

AC
·
√

AB2 −AD2 =
12

15
· 5.

Our answer is finally

DF = DE − EF = 9 · 12
15

− 5 · 12
15

=
16

5
.

Solution to Example 5.9.

There are two cases of this problem, for whether P lies on arc ÃB or B̃C. Let us suppose

that P is on ÃB, though in the other configuration the derivation is similar.

Q is floating outside of ABC somewhere in the open. Q is defined in terms of BP and DF ,
so we obviously need to use some angle features of these two lines.
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Thinking of angles, really the only thing we can hope for is that somewhere the two lines
create congruent angles, so we may form a cyclic quadrilateral. Ideally, the cyclic quadrilateral
should contain A, so we actually end up with AQ.

It isn’t too hard to guess that AFPQ is cyclic. Indeed, we will show that

̸ AFQ = ̸ C = ̸ APQ.

The fact that opposite angles in a cyclic quadrilateral are supplementary gives

̸ C
⊙ABC
= 180◦ − ̸ APB = ̸ APQ.

Here, we used that Q lies on BP .

Now, remember that△BDF ∼ △BAC (fromExample 5.7), we get ̸ C = ̸ BFD = ̸ AFQ,
where the later equality follows from Q being on DF .

A

B CD

E

F

P

Q

Nice, so AFPQ is cyclic. Now, we want AQ = AP , or ̸ QAP = ̸ PAQ = ̸ C. We use the
cyclic condition to transform

̸ QAP
AFPQ
= 180◦ − ̸ AFP.

It remains to show AFP = 180◦ − ̸ C. But this is true because ̸ AFE = ̸ C, as △AFE ∼
ACB. Here, we used the similarity again, but with triangles at vertex A.

So, we are done. The other configuration (where P is on the other side of EF ) is similar.

Solution to Example 5.10.

Since this is literally a synthetic geometry handout, our first instincts (hopefully) are to look
for synthetic observations.
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By the reflection condition, ̸ ABD = ̸ ABC. However, note that ̸ ABC = ̸ ACB. As
̸ ACB inscribes arc ÃB, so must ̸ ABD.

But then this must mean that DB is tangent to ⊙ABC (from Example 5.2)!

The rest is algebra and some Pythagorean Theorem. We use the circumcenter, and note that
̸ OBD = 90◦. So,

OC = OB =
√

OD2 −OB2 =
√
2.

The distance from O to BC is 
OB2 −

Å
BC

2

ã2
=

√
2

2
=⇒ ha = 1 +

√
2

2
.

Finally, the area is
1

2
· ha ·BC =

1

2
·
Ç
1 +

√
2

2

å
·
√
2 =

√
2 + 1

2
.

By the way, we did assume that △ABC is acute. If not, we would get a slightly different
answer. (So yes, this problem does have configuration issues)

Solution to Example 5.11.

First, we show that the reflection of H over BC, H ′, is on ⊙ABC.

Our strategy is instead to first let AD intersect ⊙ABC at H ′, and argue HD = H ′D, since
we like angles more.

Note that since H ′ lies on ⊙ABC (by definition), we get

̸ DCH = ̸ 90◦ − ̸ B = ̸ BAD
⊙ABC
= ̸ DCH ′

where the last equality uses congruent angles in the cyclic quadrilateral.

Similarly, we get ̸ DBH = ̸ DBH ′. Thus, △HBC ∼ △BH ′C by SAS, and it follows that
HD = HD′.

Now, to show that H reflected over M , H† lies on ⊙ABC, the same approach doesn’t work.
The line HM is not nice, as far as we can tell, since M embeds a length condition instead of an
angle condition.

We use a different strategy. Remember when segments are bisected, we can use a paral-
lelogram to “switch” the congruence condition? Here, we aren’t really switching, but we may
demand that BHCH† is a parallelogram because both segments are by construction bisecting
each other.

This gives us △BHC = CH†B. Now, doesn’t that look familiar? This is the same as H ′,
except reflected!

To finish, we may say that BHH†C is an isosceles trapezoid, so BHH†C is cyclic. Hence,
H† lies on ⊙ABC.

As an extra note, it is interesting that H ′, H† are on opposite sides of B̃C, hence on opposite
sides of the angle bisector of ̸ BAC. Interestingly, the orthocenter H and the circumcenter O are
also opposite of each other with respect to angle bisectors. (Can you show ̸ BAH = ̸ CAO?)
As a consequence, O lies on AH†.
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A

B C

D

E

F

H

M

H ′ H†

Solution to Example 5.12.

First, we wonder, what is nice about these points? Remembering the previous example,
these points lie “halfway” between the orthocenter H and the circumcircle. This must lead us
somewhere.

Indeed, we want to create more bisected segments. Why not try the midpoint of H and O?
Let this point be N . Suppose that some point X has the property that H reflected over X to
H ′ lies on ⊙ABC. (Indeed, all 9 points we have do satisfy this property). Then,

HX =
1

2
HH ′ and HN =

1

2
HO.

A

B C

D

E

F

H ON

H ′
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Now, this is enough to imply △HNX ∼ HOH ′. We consider the third pair of segments, and

NX =
1

2
OH ′ =

1

2
R.

This is really nice! H is removed from the equation, and OH ′ is merged into R. Now, NX is
constant, so all points X lie on a circle centered at N with radius R

2 .

Indeed, this is the 9-point circle. The center N9 of the 9-point circle is the midpoint between
the orthocenter and the circumcenter, and the radius of the 9-point circle is half that of the
circumcircle.

Solution to Example 5.13.

First, We need to obtain more information of I in hopes of getting something useful. Draw
AI, and AI must be the angle bisector of ̸ BAC.

̸ CIA = 180◦ − ̸ ICA− ̸ IAC = 180◦ − 1

2
̸ C − 1

2
̸ A = 90 +

1

2
̸ B

Then, we also have

̸ AID = 180◦ − ̸ CIA = 90− 1

2
̸ B

How interesting. Remember way back in Example 1.2 on what we gave for angles in
an isosceles triangle. This angle would be the base of an isosceles triangle if we have an ̸ B
somewhere.

But wait. To use the fact that D is on ⊙ABC, we have ̸ CDA = ̸ CBA = ̸ B. So, △ADI
must be isosceles!

D

A BL

C

I

Now, DI = DA, but how can we use this? Remember that D is the midpoint of ÃB, so also
DB = DI!

We finish with similar triangles and the angle bisector theorem. Note that

BD

BL
=

AC

AL
=

CI

IL
.
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Thus, IC = 10/3, and we are done.

Solution to Example 5.14.

The first question is of course how to use the condition 2BC = AB + AC. Remember
Problem 1.7 or Example 3.13? We showed that the length of tangents from A to the incircle
is s− a. In our case, s− a = a/2, which is certainly something to work off of.

Let X be the point of contact between the incircle and AB. Also, let M be the midpoint of
BC. We have AX = BM = a/2.

Let us also have AI intersect ⊙ABC at D. Now, instead to show AI = ID, we can instead
try AI = BD, using the result from Example 5.13.

Seeing these congruences, can’t we find a pair of congruent triangles? Indeed, note that
̸ NBD = ̸ XAI = ̸ A/2. Furthermore, ̸ AXI = ̸ DMB = 90◦. So,

△AXI ∼= DMB by ASA!

B C

A

I

M

D

X

Then, AI = BD, as desired.

Solution to Example 5.15.

Of course, we have another similar problem, but the length condition slightly changed. This
time, note that s− c = c.

We start with the incircle, but we aren’t quite sure how the reflected points play in. We could,
however, define P again as the intersection between CI and ⊙ABC. We know that A,B, I lies
on a circle centered at P . Maybe the same is true for K,L?

Backwards thinking gets us this far. Now, why don’t we try to force the congruence again?

Since EC = AB and ̸ ECI = ̸ ABD, we can find somewhere on CI, call it Q, where
△CQE = BDA.

However, △CEI is right, which means that if QC = QE, then also PC = QE = QI!
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A B

C

I
E

L

P

Q

That is it. We get QI = QC = BD = PI.

So, we have a nice symmetry. L is E reflected over I, while Q is P reflected over I. I bisects
both QP and EL, so PLQK is a parallelogram.

It follows that PL = QE = PI. The same argument can be made for K, and thus PA =
PK = PI = PL = PB, and we are done.

A B

C

I
E

L

P

Q

Solution to Example 5.16.

We don’t see how R−2r can be anything meaningful, so let us instead rearrange the equation
into

R2 −OI2 = 2Rr.

That is much better. Remember Power of a Point and Example 2.7? We have shown that
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R2 − OX2 is the power of X with respect to the circle, and can be seen by considering the
diameter.

Now, using power of a point, we can transfer the problem statement into any other line
through I. Of course, we choose CI, the angle bisector of ̸ ACB.

Let CI intersect ⊙ABC at P . We want to show that

CI · IP = 2Rr.

This calls for similarity. In fact, we can again use △CIE for CI/IE or CI/r, where E is
the point of contact between the incircle and AC.

A B

C

O

I

P

E

r

M

R

Now, we need another right triangle with an angle of ̸ C/2 for similarity. Our constructions
in previous problems don’t work, since it doesn’t contain R.

However, there is a much more obvious choice, and that simply is △AOP , or half of △AOP .
Here, we use IP = BP .

Let M be the midpoint of BP . We have OM ⊥ BP and ̸ BOM = ̸ C/2.

It follows that △OBM ∼ △CIE by AA. So,

OB

BP/2
=

CI

IE
=⇒ CI · CP = 2rR.

Rearranging everything back, we obtain Euler’s formula:

IO = R(R− 2r).
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