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1 Solutions to Section 1 Problems

Solution to Problem 1.1.

Let us try to use the condition of AD = BC in the most obvious way - that they can overlap
with each other!

Move △ADC to △A′D′C ′ where A′D′ overlaps with BC. (Alternatively, you may say that
you constructed a congruent triangle instead of move, but I think move here better illustrates
the motivation)

D C

B
A

82◦

98◦

C ′

98◦

Now, since ̸ DBC and ̸ ADC = ̸ A′D′C ′ are supplementary, DBC ′ is actually a straight
line!

Now, recall that D′C ′, or CC ′ is congruent to DC, since we moved the triangle over. Then,
the larger triangle △DCC ′ is isosceles. This tells us that ̸ BDC = ̸ BC ′C = ̸ ACD.

Finally, our answer is

̸ ACD = ̸ BDC = 180◦ − ̸ DBC − ̸ DCB = 180◦ − 82◦ − 70◦ = 28◦.

D C

B

A′

A

82◦

98◦

98◦

Alternatively, let us try to use the fact that ̸ DAC, ̸ DBC are supplementary to create
cyclic quadrilaterals.

Reflect A over CD to A′. Then, BCA′D is cyclic. We may then use DA′ = BC to say that
the inscribed angles are congruent, that is, ̸ DCA′ = ̸ CDB = 28◦.
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Finally, one more way to think about this problem is that △CDA and CDB are two triangles
that are “angle-side-side congruent”, or not quite, but they will be guaranteed to have a pair of
supplementary (or congruent) angles.

Solution to Problem 1.2.

A B

C

P

P ′

Once again, we are given congruent segments, namely CA and CB. Indeed, let us rotate
△CAP by 60◦ about C so that CA′ overlaps with CB.

Since ̸ CAP and ̸ CBP are supplementary, and ̸ CBP ′ = ̸ CAP , we have that ̸ PBP ′ =
180◦, so P,B, P ′ are collinear.

But then, remember that we sent CP to CP ′, and ̸ PCP ′ = 60◦, so △PCP ′ is equilateral!
So, we get CP = CP ′ = PP ′ = PB +BP ′, which then gives CP = AP +BP .

To recap, there were two important nice events that enabled the construction - that ̸ ACB =
60◦, and that P lied on the circumcircle of △ABC, which made P,B, P ′ collinear.

Solution to Problem 1.3.

A B

C

M M ′

150◦60◦

23◦

First, we label in ̸ ACM = 23◦, ̸ MAC = 7◦. Also, since ACB = 106◦, ̸ MCB = 83◦. It
appears that we can make an equilateral triangle.

Indeed, reflect M ′ over the line of symmetry of the isosceles triangle. Then, MCM ′ =
106◦ − 2 · 23◦ = 60◦.
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That was nice, but not enough. 7◦ must also play into the diagram nicely. There are quite
a few ways to approach the next step, but if you have labeled in ̸ AMC = BM ′C = 150◦, then
you might have noticed something.

Recall that ̸ MM ′C = 60◦, so ̸ MBM ′ = 360◦ − 60◦ − 150◦ = 150◦. Great, we have
̸ MM ′B = CM ′B.

Finally, we make the critical construction that △M ′MB ∼ △CMB by SAS, so BM = BC
and ̸ BMM ′ = 23◦. It follows that ̸ CMB = ̸ BCM = 83◦.

Solution to Problem 1.4.

This nice little problem has two ways to approach. We first present the more straightforward,
but maybe just a bit less elegant solution.

Take X to be the intersection of AC and BD. Observe that ̸ ABD − ̸ CBD = 60◦, so let
us draw X ′ on AC by reflecting X over the line of symmetry of △ABC.

A C

40◦ 40◦

B

20◦

D

XX ′

Then, ̸ ABX ′ = ̸ CBX = 20◦, so ̸ X ′BX = 60◦. Furthermore, since BX = BX ′, we have
that △XBX ′ is equilateral.

To use the congruent segment condition, subtract BX = XX ′ from AC = BD to obtain

BD −BX = AC −XX ′ =⇒ XD = AX ′ +XC =⇒ XD = 2XC

However, remember that ̸ DXC = ̸ X ′XB = 60◦, by our equilateral triangle condition.
Thus, △DXC must be a 30-60-90 triangle! It follows that ̸ XCD = 90◦, and ̸ BCD =
40◦ + 90◦ = 130◦.

The second approach is to use the congruent segment condition to overlap. Conveniently, we
can set up another equilateral triangle.

Construct △B′C ′D′ such that △B′C ′D′ ∼= △BCD and B′D′ overlaps with CA. Here,

̸ AC ′C = ̸ DBC = 20◦ =⇒ ̸ BCC ′ = 20◦ + 40◦ = 60◦.

So, △BCC ′ is equilateral, and BC ′ = BC = AB. Therefore, △ABC ′ is also isosceles!

Then, we find that

̸ ABC ′ = 100◦ − 60◦ = 40◦ =⇒ ̸ BC ′A =
180◦ − 40◦

2
= 70◦
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A C

40◦ 40◦

B

20◦

D

X

C ′

Finally,
̸ BCD = ̸ CC ′A = ̸ CC ′B + ̸ BC ′A = 60◦ + 70◦ = 130◦

which agrees with our first method.

Solution to Problem 1.5.

B D M C

X

A

B D M C

X

A

While I feel the above diagram is already a really beautiful proof without words, it still helps
to get some idea of the motivation.

There isn’t one, so to speak. Our strategy is just guess stuff and hope things like this problem
works out nicely.

To start, given a 60◦ angle, our intuition is immediately to create equilateral triangles. To do
this, we consider breaking DC up into DM,MC so that from DC = 2 ·BD follows BD = DM .
Then, we draw equilateral △DXM with X on AD, and BD = DX.

Now, the real coincidence is that

̸ BDX = 120◦ =⇒ ̸ XBD = 30◦ =⇒ ̸ ABX = 45◦ − 30◦ = 15◦.

But we also have that BAX = 15◦, so XB = XA!

The rest is filling in more tiles of isosceles triangles. XC = XB by symmetry, so XA = XC.
Then, we calculate some angles to find that ̸ ACB = 75◦.
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Solution to Problem 1.6.

A

P

R

D

C

B

Q

S

40◦
20◦

20◦

40◦

We start with ̸ BCD = 180◦ − ̸ BAD = 120◦, and ̸ BDC = ̸ DBC = 30◦. So,

̸ APD = 180◦ − ̸ PBC − ̸ PCB = ̸ ABC + ̸ BCD − 180◦ = 70◦ + 30◦ + 120◦ − 180◦ = 40◦.

Similarly, we have ̸ AQB = 20◦.

As usual, our instinct is to draw an equilateral triangle. Since PAQ = 60◦, let us take R on
AQ such that ̸ APR = ̸ ARP = 60◦.

We start by noting that C lies on the line of symmetry of isosceles △RAP (of course,
equilateral implies isosceles). This is because ̸ CAB = ̸ CAD = 30◦.

Therefore, by symmetry, we get ̸ DRC = BPC = 40◦. The critical observation is that

̸ CDR = 180◦ − 80◦ = 100◦.

So, △CDR must be isosceles!

The rest falls in place. As ̸ DPR = ̸ DQC = 20◦, DR = DC, and of course ̸ PDR =
̸ QDC, we have that △DPR ∼= △DQC.

Finally, △PDQ is isosceles, so ̸ DPQ = ̸ DQP = 40◦, and our answer is ̸ APQ− ̸ AQP =
80◦ − 40◦ = 40◦.

Solution to Problem 1.7.

We have a bunch of congruent segments and angles. How should we make congruent triangles?
There is but one obvious approach.

Extend EA to meet BC at X. Similarly, extend ED to meet BC at Y . Finally, let AB and
CD meet at Z.

6



Ideas and Insight in Synthetic Geometry: Solution to Problems 7

Now, our congruent angles actually bend into congruent triangles. We have, by ASA,

△AXB ∼= △CZB ∼= △CY D.

B C

Z

X Y

A

D

Now, ̸ AXB = ̸ CY D, so △XEY is actually isosceles! This encourages us to simplify the
condition: the perpendicular from E to BC is actually the perpendicular bisector of XY . We
want to show that the intersection of AC and BD lies on this perpendicular bisector.

Let ̸ BCZ = α, ̸ CBZ = β, we can compute, via isosceles triangles △ABC and △BCD,
that

̸ CBD =
180− ̸ BCD

2
=

α

2
and ̸ BCA =

180− ̸ CBA

2
=

β

2

Now, this reminds us of angle bisectors. Why don’t we wrap everything inside △BZC? If P
is the intersection of AC and BD, and I is the incenter of BZC, then BICP is a parallelogram.

x

z
z

y

B C

Z

X Y

A

D

P

I

J

K

G

H

Dropping perpendiculars from the incenter is easy. Recall that in Example 1.1, we found
three pairs of congruent segments. Here, they are in the diagram.
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Take BJ = BG = x, CJ = CH = y, and ZG = ZH = z. By △BPC ∼= △CIB, we have
BK = y and CK = x.

To show that P lies on the perpendicular bisector of XY , it suffices to show that

XK = XB +BK = Y C + CK = KY

However, we know that XB = BZ = x+ z and Y C = CZ = y + z, so the equation is true! We
end up with XK = KY = x+ y + z.

Therefore, we have successfully shown that the three given lines are concurrent.

Solution to Problem 1.8.

A B

C

D

E

X

Y

This is for sure the toughest problem for chapter 1, but luckily there are also many ways to
solve this problem.

To start, we first observe that △ABE, △BDC are isosceles. We don’t have any immediate
information about anything related to line DE, so lets just try some stuff, and hope we’ll get
somewhere.

We stick to our ideas, and apply ideas directly. There is a 60◦ standing out, so let us draw X
on AB such that △XDB is equilateral. Also, let us try reflecting D over the line of symmetry
of△ACB to get Y .

Now, it certainly appears that DY = XA. Indeed, we can prove that XAYD is a parallel-
ogram. By construction, DY is parallel to AB. Furthermore, ̸ Y AB = ̸ DBA by symmetry,
and ̸ DBA = ̸ BXD =⇒ XD ∥ AY .

That is about as far as we can go with these two constructions. However, we still haven’t
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used that △XDB is equilateral (we only needed it being isosceles so far), neither have we used
the two isosceles triangles noted in the beginning.

There is now one magical point floating around the diagram that can use all these conditions.
We draw Z on BC where BZ = BD!

A B

C

D

E

X

Y

Z

By our construction, observe that

EZ = BZ −BE = BD −AB = AX.

where we used △ABE and XBD being isosceles.

However, also note that BD = DC =⇒ BZ = BD = DC = CY . Furthermore, since
̸ DCY = ̸ DBZ = 20◦, we obtain

△DBZ ∼= △DCY =⇒ DZ = DY.

Indeed, it happens that Z is also Y reflected over the line of symmetry of isosceles △BDC.

Now, we are ready to tie everything together, with

DZ = DY = AX = EZ

We are basically done. Now, all that remains is to recognize △DZE is isosceles, and

̸ BDZ = 80◦, ̸ ZDE =
180◦ − 80◦

2
= 50◦ =⇒ ̸ BDE = 80◦ − 50◦ = 30◦

and our answer is ̸ BDE = 30◦.
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2 Solutions to Section 2 Problems

Solution to Problem 2.1.

Note that △ADP ∼ △CDB. Then,

DP

AP
=

DB

CB

Likewise, △CDA ∼ △BDP . So,
DP

BP
=

DA

AC

Adding the two results together (and using the fact that AB = BC = CA), we get

DP

AP
+

DP

BP
=

DA+DB

AB
= 1 =⇒ 1

AP
+

1

BP
=

1

DP

Solution to Problem 2.2.

The main annoying part of this problem is that the configuration is inside a parallelogram
inside of a triangle. However, we can easily shift the problem so that our attention resides within
a triangle.

We shrink △ABD down to the size of M . To be more precise, take D′ so that AD′

AD = AM
AB =

17
1000 . Here, △AMD′ ∼ △ABD. Finally, let MD′ intersect AC at C ′.

D

BA M

D′

C

N C ′

A M

D′

N
C ′

P1000

1009

X

We are now able to draw a diagram, and the scenario becomes familiar.

AN

AD′ =
1000

2009
=⇒ AN

ND′ =
1000

1009
.

Draw X on MN such that NC ′ = AD′.

AP

PC ′ =
AN

XC ′ =
2000

1009
=⇒ AP

AC ′ =
2000

3009
.

Finally, we stretch back to the original parallelogram. We stretch by a factor of 1000
17 · 2, so

AP

AC
=

2000

3009
· 17

2000
= 117
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Solution to Problem 2.3.

The most obvious thing to do is ratios. Since K is the midpoint of PM and AC, MAPC is
a parallelogram. Then, CP = AM = 180.

Now, we know AK : KL = 1, and AL : LB = 450 : 300 by the angle bisector theorem. Can
we find PL : CP?

Indeed, this is routine. Draw X on KP such that XL ∥ AC. We have △BPL ∼ △BKA,
and △PXL ∼ XKC. Therefore,

XL

KC
=

XL

AC
=⇒ PL

CP
=

BL

AB
=

300

300 + 450

Thus, PL = 300
750 · 180 = 72.

A slightly more direct approach this problem is to consider△BPL ∼ BMA, which is basically
the idea behind proving the angle bisector theorem.

Solution to Problem 2.4.

A B

C

D
E

F

X

The parallel segment technique appears again. Draw X on BE so that XD ∥ AC. Due to
the parallel condition, we have two similar triangles

△BDX ∼ △BCE and △AEF ∼ DXF

So, we have
AF

DF
=

AE

XD
and

XD

EC
=

BD

BC
=⇒ AF

FD
=

AE

EC
· BC

BD

Now, it remains to find AE/EC and BC/BD. Here, we may use the angle bisector theorem.

AE

EC
=

AB

BC
=

6

7

BC

BD
=

BD +DC

BD
=

AB +AC

AB
=

6 + 8

6

Finally, our answer is
AF

DF
=

6

7
· 6 + 8

6
= 2
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Solution to Problem 2.5.

This problem is a more confusing problem. We can draw in circle O, but it doesn’t seem like
we can apply power of a point.

This time, we try to examine the structure of the problem. Let us fix BC. The locus of
possible A is a circle around B with radius BC. After we chose A, D is the foot from A to BC.
O is still the same circle, and E is the intersection of AD and O.

BC

A

D

E

M

There must be a fixed ratio between AC and CE, for our problem to have a definitive answer.
So, we intuitively must have similar triangles somewhere.

Let us intersect AC and O at M . It follows that ̸ CMB = 90◦, since BC is a diameter.
Then, M is the midpoint of base AC!

Now, there seems to be a pair of similar triangles formed. Indeed,

̸ CAE = 90◦ − ̸ ACD and ̸ MEC = ̸ MBC = 90◦ − ̸ ACD

So, by AA similarity

△CME ∼ △CEA =⇒ CE

CM
=

CA

CE
=⇒ CE =

…
1

2
CA2 =

√
2

Solution to Problem 2.6.

Here’s a problem that is quite scary looking, but certainly not hard. We just need to keep
track of where everything is going.

We want to find XF · XG, and we do this by writing XF , XG in terms of given lengths
separately. It is essential to draw a correct diagram here.

Since AC ∥ EF , we have

△CXA ∼ △FXE =⇒ XF

XE
=

XC

XA
.

Also, we have EY ∥ AD, which means

△Y XE ∼ △DXA =⇒ XE

XA
=

XY

XD
.

12
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A

B

C

D
X

Y

E

F

G

Combining the two equations to cancel XE gives

XF =
XC

XA
· XY

XD
·XA.

Now, using Power of a Point on X, we may find that

XC ·XG = XB ·XD =⇒ XG =
XB ·XD

XC
.

Conveniently, we find that

XF ·XG = XB ·XY = BD2 · XB

BD
· XY

BD
,

where all not nice terms cancel, and we are left with BD and some fractions we know.

Now, to find BD2, we use the stronger form of Ptolemey’s theorem (Example 2.11), and
we obtain

BD2 =
(6 + 48)(16 + 18)

(24 + 12)
= 51

To finish,

XF ·XG = 51 · 3
4
· 16
36

= 17.

Solution to Problem 2.7.

Now, the final problem for this section will be a USAMO problem. It isn’t that hard, but
quite rewarding, since it brings in many ideas of this handout (including some later in the
handout). As so, it is worth revisiting this problem after you finish the handout.

From Example 2.6, we know that MF = MC only if AE ∥ CF . However, in this problem
we need to prove both if and only if directions. Is the if direction also true?

Indeed, it is, and we again need to use some ratios to force congruence. For convince, we will
temporarily use the labeling of Example 2.6.

Let the line through B parallel to CP intersect AD at X. Likewise, let the line through C
parallel to BP intersect AD at Y .

We need to show that X = Y (which in turn will become P ′). However, this is not obvious
at all, and we don’t have any direct techniques. (Remember, we can’t use BD = DC, because
that is what we want to prove!)

13
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A

B CD

EF

P

X Y

What we can do is to note that, by the parallel condition, we have

△AFP ∼ ABX and △AEP ∼ △ACY.

Now,
AF

FB
=

AP

AX
and

AE

AC
=

AP

AY
.

However, remember that EF ∥ BC and △FAE ∼ △BAC, so

AF

FB
=

AE

AC
=⇒ AP

AX
=

AP

AY
.

Now, we know X = Y , call it P ′, and BPCP ′ is a parallelogram, since BP ′ ∥ CP and
CP ′ ∥ BP . Thus, BD = DC.

Returning back to the original problem, we now want AE ∥ FC if and only if MB ·MD =
MC2.

The later condition, looks very much like similar triangles. Indeed,

MD

MC
=

MC

MB
⇐⇒ △MDC ∼ △MCB.

Now, a necessary and sufficient condition for △MDC ∼ △MCB is ̸ MCD = ̸ MBC (which
completes AA similarity).

We also need to use the cyclic condition, and note that

̸ DBE =
1

2
D̃E = ̸ DAE.

Finally, observe that ̸ DAE = ̸ MBC = ̸ MCD is just the condition for AE ∥ FC!

So, we can tie everything together:

MB ·MD = MC2 ⇐⇒ ̸ MCD = ̸ MBC ⇐⇒ AE ∥ FC.

14
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B C

D

M

F

A

E

As an extra remark, you might have noticed that MB ·MD = MC2 looks like Power of a
Point. Indeed, you would be correct, and here MC is a “degenerate” line, where it only intersects
the circle once. We will see more of this in Example 5.2.

15
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3 Solutions to Section 3 Problems

Solution to Problem 3.1.

Construct B′ on AB so that DB′BC is a parallelogram. B′B = DC = 39, so AB′ =
AB −BB′ = 52− 39 = 13.

Since DB′ = CB = 12, and DA = 5, △ADB′ is then a 5-12-13 right triangle. So, the altitude
h from D to AB′ must satisfy

AB′ · h
2

= [ADB′] =
5 · 12
2

=⇒ h =
60

13

Therefore, we may find that

[ABCD] = [ADB′] + [DB′BC] =
5 · 12
2

+ 39 · 60
13

= 210

Solution to Problem 3.2.

Without loss of generality, let AB = 1. Let AE = x. Then, ED = EF = 1− x.

Since △BEF is equilateral, we can compute the side length of △BEF in two ways, with the
Pythagorean Thereom on △EAB and △EDF .√

12 + x2 = BE = EF
»
(1− x)2 + (1− x)2 =⇒ x2 − 4x+ 1 = 0

We can solve this, but it turns out that we don’t need to, just yet. Let’s first find the area
ratio in terms of x.

[DEF ]

[ABE]
=

DE ·DF

AB ·AE
=

1− 2x+ x2

x
.

Finally, we can finish with some nice algebraic manipulation.

x2 − 4x+ 1 = 0 =⇒ 1− 2x+ x2

x
=

[DEF ]

[ABE]
= 2.

Solution to Problem 3.3.

r

r

1
r

1

r

Once again, we try to set up a right triangle with the segment joining the centers of the two
circles as the hypotenuse.

16
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While the hypotenuse has length 1 + r, the legs parallel to the axes have lengths r,±(3− r)
depending on if the circle is larger or smaller. Regardless, we can setup

(3− r)2 + r2 = (r + 1)2

r2 − 8r + 8 = 0

r =
8±

√
32

2

Therefore, we can quickly deduce that the sum of two possible r1 + r2 = 8.

Solution to Problem 3.4.

A

B C

P

F

Q

G

r
16r

16

A

B C

P

F

X

M

Let F,G be the point of tangency between circle P , Q and BC, respectively. By symmetry
of tangents, observe that

̸ PCF = ̸ QBG =
̸ C

2
=

̸ B

2

If we want to express CF,BG in terms of r, we need to use the angle bisector trick again.

Let M be the midpoint of BC. △CMB is a 7-24-25 right triangle. Now, let PF intersect AC
at X. △CMB ∼ △CFX, and the later is also a 7-24-25 right triangle. By the angle bisector
theorem,

PF

PX
=

CF

CX
=⇒ PF

XF
=

CF

CF +XC
=⇒ PF

CF
=

24

7 + 25
=

3

4
.

Since P lies on the angle bisector of ̸ C, we have PF/FC = 3/4. Similarly, QG/GB = 3/4.
Thus, we can say that

GF = BC − FC −BG = 56− 4

3
· (16 + r).

Now, we have a right triangle with side lengths (16− r), GF, (16 + r). We use the Pythagorean,

17
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and solve for r:

GF 2 + (16− r)2 = (16 + r)2Å
56− 4

3
· 16− 4

3
· r
ã2

= 64r

262 − 52r + r2 = 36r

r = 44− 6
√
35

and we are done.

Solution to Problem 3.5.

Once again, we work in the “default” axes of ℓ and its perpendiculars.

It should be now routine to find P ′Q′, Q′R′. Indeed,

P ′Q′2 = (2 + 1)2 − (2− 1)2 =⇒ PQ = 2
√
2

Q′R′ = (3 + 2)2 − (3− 2)2 =⇒ Q′R′ = 2
√
6

Now, the quickest way to solve is to carefully label all lengths in the direction of our axes.

Q

R

P

P ′ Q′ R′

2
√
2 + 2

√
6

2
√
2

1

2

2
√
6

1

Then, we simply subtract the area of the right triangles from the larger rectangle to get
[PQR].

[PQR] = 2 · (2
√
2 + 2

√
6)− 2

√
2−

√
2−

√
6− (2

√
2 + 2

√
6) =

√
6−

√
2.

Solution to Problem 3.6.

Let M,N be the midpoints of AB,CD, respectively. We find that

OM =
√

252 − 152 = 20 and ON =
√
252 − 72 = 24.

Now, P is a point such that ̸ OMP = ̸ ONP = 90◦. Therefore, quadrilateral OMPN must
be cyclic, as opposite angles are supplementary. Moreover, since the angles are right, OP is a
diameter.

We know the side lengths of △OMN , so we can compute the circumradius of △OMN .

R =
20 · 12 · 24

4 ·
√
28 · 4 · 8 · 16

=
45√
14

But OP is the diameter of the circumcircle of △OMN , so OP = 2R = 90/
√
14.

18
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Solution to Problem 3.7.

Let the centers of ωA, ωB , ωC , ω be OA, OB , OC , O, and let the radii of the four circles be r.

Note that the distance from OB and OC to BC is r, so OBOC ∥ BC. Likewise for OAOB

and OAOC . Therefore,
△OAOBOC ∼ △ABC

Notice that OOA = OOB = OOC = 2r, so O is actually the circumcircle of △OAOBOC .

B C

A

OB OC

OA

O

B C

A

OB OC

OA

O

M N

2r

2r

2r

2r

2r

Now, we want to find the proportionality factor k between △OAOBOC and △ABC, so we
may say 2r/R = k, where R is the circumradius of △ABC.

Let the point of tangency between ωB , ωC and BC beM,N , respectively, We use the tangency
trick one more time to deduce

OBM

BM
=

12

5 + 13
=

2

3
and

OCN

CN
=

12

9 + 15
=

1

2

So, we have the ratio of the side lengths in terms of r:

k =
OBOC

BC
=

BC −BM − CN

BC
=

14− 7
2r

14

Finally, it is easy to find R = 65/8, which means that

k =
2r
65
8

=
14− 7

2r

14
=⇒ r =

260

129
.

Solution to Problem 3.8.

This is another great problem illustrating an initial synthetic observation and bashing out
the rest of the problem. In spirit of this section, of course we bash.

Since F lies on the circle γ with diameter DE, we need ̸ DFE = 90◦. Switching back to ω,
DF must intersect ω again at a point diametrically opposite to E. Let this point be G, and let
GE intersect CD at M .

Observe that △GDE ∼ △ADF . Thus, to find AF we need GE,GD,AD. GE is just 2R.
AD is the length of the angle bisector, which can be obtained by Steward’s.

19
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B C

A

O

D

E

F

G

M

Finally, GD can be computed by the Pythagorean Theorem on △GMD. MD is simple, and
we can use GM = GO−MO = R−MO, which we need another Pythagorean Theorem to find
MO2 = R2 − CM2.

And we are basically done! That was the setup; it remains to compute everything out.

First, we find the circumradius and DM .

R =
3 · 5 · 7

4 ·
»

15
2 · 9

2 · 5
2 · 1

2

=
7√
3
.

CD =
5

8
· 7 , BD =

3

8
· 7 and DM = CD − CM =

1

8
· 7

Now, we find AD with Stewart’s.

AD2 ·BC +DB ·DC ·BC = AB2 · CD +AC2 ·BD

AD2 · 7 + 3 · 5
82

· 73 = 32 · 3
8
· 7 + 52 · 5

8
· 7

AD2 = 15

Å
1− 72

82

ã
AD =

15

8

20
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Lastly, we find GD.

GD2 = GM2 +DM2 = (GO −MO)2 +DM2

=
Ä
R−

√
R2 − CM2

ä2
+DM2

=

Ñ
7√
3
−

√Å
7√
3

ã2
−
Å
7

2

ã2é2

+

Å
7

8

ã2
=

Å
7√
3
− 7√

12

ã2
+

Å
7

8

ã2
= 72 ·

Å
1

12
+

1

64

ã
GD =

7

8

√
19√
3

The algebra worked out quite nicely, so this computation really isn’t that long. (especially if
we just committed through)

Therefore, our final answer is

AF = GE · GD

AD
= 2 · 7√

3
· 15
8

· 8
7

√
3√
19

=
30√
19
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4 Solutions to Section 4 Problems

Solution to Problem 4.1.

Since we are given that AD,EC are medians, we have enough information to find AP/PD
and CP/PE. From Menelaus’s , we have that

1 =
AP

PD
· CD

BC
· BE

AE
=

AP

PD
· 1
2
· 1
1

=⇒ AP

PD
= 2

Be careful with the segments used in the equation, since the names given in this problem is
different then our standard setup. (Alternatively, it may be more comfortable to just draw in
the parallel line)

This is a useful fact to know, that the medians split each other in a two to one ratio. We
now know that AP = 4, and likewise CP = 3.

Notice that △EPD is a right triangle. Then, we just need to compute the sum of area for
four right triangles.

[ACDE] = [APC] + [CPD] + [DPE] + [EPA] =
4 · 3
2

+
3 · 2
2

+
2 · 1.5

2
+

1.5 · 4
2

=
27

2
.

Solution to Problem 4.2.

By Ceva’s theorem, we have
AE

EC
· CD

DB
· BF

AF
= 1

It is given that CD = DB from the midpoint condition. Furthermore, by the angle bisector
theorem

BF

AF
=

CB

AC
=

4

5
.

Using Ceva’s theorem gives us AE/EC = 5/4. Since AC = 5, it follows that CE = 20/9.
Finally, we compute

EB =

 
42 −

Å
20

9

ã2
=

8
√
14

9
and [ABC] =

20
√
14

9

Solution to Problem 4.3.

A MO

R

X

E

First, we create altitudes. Let X be the foot of altitude from C to RM . Since AM is a
diameter, ̸ RAM = 90◦, and RA is an altitude of RAM .
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Compare △RAM and △REM . Note that both triangles have share a base RM . Then, since
their areas are equal, so are their altitudes, and RA = EX.

Since E lies on the angle bisector or ̸ RAM , R is on the midpoint of arc RM , and RX = XM .
So, E,X and the center of the circle O is collinear.

Now, △RAM ∼ XOM by a scale factor of 2. So, 2XO = RA. Denoting the radius of the
circle to be r, we get

EO = r = EX +XO =
3

2
RA =⇒ RA =

2

3
r

Finally, we need

RM =
√
AM2 −RA2 =

 
4r2 −

Å
2r

3

ã2
= r

4
√
2

3
.

Since r = 1, the final area of

[MARE] =
2

3
· 4

√
3

3
=

8
√
2

9
.

Solution to Problem 4.4.

A B

CD

M

N

O
P

w
v

x

y

Let [ABCD] = 84 · 42 = T . Our strategy is to first express [ADN ], [CDM ], [MDO] in
terms of T to find [BCON ], since the former areas are easier to calculate (to find the area of a
quadrilateral, what we really do is to find the areas of complementary triangles!).

It is easy to see that

[ADN ] =
1

2
· 84
3

· 42 =
T

6
and [CDM ] =

1

2
· 84 · 42

2
=

T

4
.

[MDO] is trickier, but nothing more then some proportions. Let the distance from O to
A,CD be x, y, respectively. We have (without explicitly drawing in the altitudes and similar
triangles)

x

y
=

AN

AD
=

84/3

42
and

84− x

y
=

DC

DM
=

84

42/2

This solves to x = 12, y = 18, which means that

[MDO] =
1

2
· 18 · 42

2
=

T

28
.

By complementary counting, we can see that (especially paying attention to how many times
we count [MDO])

[BCON ] = T − T

6
− T

4
+

T

28
=

13

21
T.
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Now, we need △BPC to have half that area. Again, letting the distance from P to BC,CD
be v, w, we get

[BCP ] =
1

2
· v · 42 =

13T

42
=⇒ v = 52.

To finish, we need to find w with

v

w
=

CD

DM
=

84

42/2
=⇒ w = 13.

So, our final answer is

[CDP ] =
1

2
CD · w = 546.

Solution to Problem 4.5.

First, we note that we only need to consider ABCD, since the other side is the same by
symmetry of parallelograms. It is given that [ABD] = [ACD] = 84. Since the two areas are
equal, B,C must be equidistant from AD, so ABCD forms a trapezoid.

The tricky part of this problem is to set up the numeric relations effectively. Let the inter-
section of AC,BD be G. Recall that in Example 4.9 we implicitly showed that

[AGB] = [CGD] = κ[BGC] =
1

κ
[DGA],

where κ is the scale factor between the △BGC ∼ △DGA similarity.

Let us use this fact. Letting [AGB] = A, We need

A =
A

κ
+ 10 and A+ κA = 84.

This solves to (A, κ) = (12, 6) or (35, 7/5). To minimize [ABCD], we take A = 12, and the
total area of ABCDEF is

2 · (12 + 12 + 2 + 72) = 196.

Solution to Problem 4.6.

It is not hard to find DM,MC using the angle bisector theorem. What we need is BF,FC.
Then, we can use Menelauses’s to finish.

It is unclear how to use the right angle. Instead, why don’t we focus on the other half of the
diagram - △ABD. Indeed, △ABD isn’t doing much, but we can make it so.

Recall Example 2.12? We are going to do the same thing, but with a twist. Take △ABD,
and map B → C,A → B,D → D′.

Now, ̸ BD′C and ̸ BDC are supplementary, so we have cyclic BDCD′. Moreover, we also
have ̸ D′CB = ̸ DBA. However, it is given, by the angle bisector condition, that ̸ DBA =
̸ CBD, so actually

̸ CBD = ̸ D′CB =⇒ BD ∥ D′C!

Henceforth, we have created an isosceles trapezoid. Now, the right angle comes into play. In
an isosceles trapezoid, the two altitudes create two congruent triangles and a rectangle. Let DG
be altitude from D to D′C. We have

GC =
1

2
(D′C −BD)
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A C

B

D

F

M

E

D′

G

We can find D′C. Since BA is mapped to CB, our scale factor is BC/BA.

GC =
1

2
·BD ·

Å
BC

BA
− 1

ã
= BD · 147

720
.

Now, since △FGC ∼ FDB, we have

CF

BF
=

GC

BD
=

147

720
=⇒ BC

BF
=

867

720
.

We are ready to finish the problem.

DC =
BC

BC +BA
·AC =

507

867
· 780.

DM

MC
=

Å
507

867
· 780− 1

2
· 780

ã
/
1

2
· 780 =

147

867
.

At last, with Menelaus’s

DE

EF
=

DM

MC
· CB

BF
=

867

720
· 147
867

=
49

240
.

Solution to Problem 4.7.

Let AD ∩BE = X, BE ∩ CF = Y , CF ∩AD = Z. Consider △BXC.

We first consider if △ABC is equilateral.

Since BD = 2CD, we have that [BXD] = 2[CXD], and [BZD] = 2[CZD], since the two
pairs of triangles share the same height (third vertex).

This implies that [BXZ] = 2[CXZ]. However, by symmetry we have △BZY ∼= △CXZ,
which means that

[XY Z] + [BZY ] = 2[CXZ] =⇒ [XY Z] = [CXZ].

The equal area condition implies that Y Z = ZC, since the two triangles have the same
altitude to Y C.
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B C

A

D

E

F

X

Y
Z

We switch our attention to △BZY and △BZC, that is on the other side of Y C. Similairly,
these two triangles have the same altitude and congruent bases (Y Z = ZC), so

[BZC] = [BZY ] = [XY Z] =⇒ [BY C] = 2[XY Z]

However, note that △ABC can be partitioned, by symmetry, into three triangles congruent
to △BY C and the middle △XY Z. So, it follows that the middle △XY Z has one-seventh the
total area.

If △ABC is not equilateral, then our symmetry argument fails. Regardless, we can use
Menelaus’s, to find that

CZ

ZF
=

3

4
and

DZ

ZA
=

1

6
.

Our ratio argument works for all three cevians, and we then know that the three cevians are
partitioned into a 3 : 3 : 1 ratio, hence

Y Z = ZC and Y X = Y B.

Note that [XY Z] = [CXZ], since bases are equal and they share the same altitude. Further-
more, [CXZ] = [CBZ], since they share the same base, and their altitudes (distance from X,B
to Y C) are equal (since Y X = Y B).

We can again partition △ABC into seven triangles of equal area, and once again △XY Z
has one-seventh the total area.
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5 Solutions to Section 5 Problems

Solution to Problem 5.1.

What we should first do again is to draw in the tangent line to P,Q at A. Let the tangent
intersect BC at M . We know that equal tangents imply MB = MA = MC, so △BAC is a
right triangle.

A

B C

D

E
M

F

Now, we also should use inscribed angles on the tangent angles. We have

̸ CEA = ̸ MAC and ̸ BDA = ̸ MAB.

This means that ̸ CEA+ ̸ BDA = ̸ BAC = 90◦ so if we let DB,EC intersect at F , then
̸ DFE = 90◦. Furthermore,

△DFE ∼ △BAC.

This is of course nice, but we need a better means of extrapolating the information.

First, we can say that BACF is cyclic, with BC diameter, since both ̸ BAC and ̸ BFC are
right angles. Next, we can angle chase

̸ CEA = ̸ MAC = ̸ MCA = ̸ BFA,

where the second equality comes from isosceles △AMC, and the last equality comes from cyclic
BACF .

We also have ̸ ABF = 180◦ = ̸ ACF = ̸ ACE. Thus,

△ABF ∼ △ACE!

Likewise, we have △ACF ∼ △ABD, on the other side. Also, it happens that AF ⊥ DE,
which can make drawing the diagram easier.

This is as far as we get without the area condition [ABD] = [ACE]. But first, it helps to to
know that the similarity ratio for the two pairs of triangles above is AB/AC and AC/AB, so it
helps knowing this value.

By now, we can easily find BC =
√
(4 + 1)2 − (4− 1)2 = 4. Hence MB = MA = MC = 2.

The most direct (though overkill) method to find AB and BC, respectively, is probably the
strong form of Ptolemey’s.

AB2 =
(2 · 1 + 2 · 1)2

(2 · 2 + 1 · 1)
and AC2 =

(2 · 4 + 2 · 4)2

(2 · 2 + 4 · 4)
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B C

A

F

D

E

M

Upon solving, we obtain

AB =
4√
5
, AC =

8√
5
, and κ =

AC

AB
= 2.

Returning to the similar triangles, we note that the scale factor between △ABF and △ACE
is κ. Hence,

[ABF ] =
1

κ2
[ACE]

However, it is given that [ACE] = [ABE], so we also have

[ABF ] =
1

κ2
[ABD]

But now, these triangles share an altitude! So, we can actually deduce that

BF · κ2 = DB

We do the same with the other side, and obtain (reciprocally)

CF = CE · κ2

1κ2

1

κ2

1

κ2

F

D

E

B

C

A

Finally, we note that

AE

AF
=

AF

AD
=

FE

FD
= κ =⇒ DA · κ2 = AE.
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Now, setting κ = 2, and [DFE] = T , we find

[ABD] = [BFC] = [ACE] =
4

25
T =⇒ [BAE] =

13

25
T.

But we have found AB,AC previously. So,

[ABD] = [ACE] =
4

13
· [BAE] =

4

13
· 1
2
· 4√

5
· 8√

5
=

64

65
.

Solution to Problem 5.2.

The first matter on our hands is how to deal with the tangents condition. What we can say
is that two circles tangent to each other are tangent to the same line at the point of contact.

Let CA,CB be the tangents to ω. Then, they are also tangents of ω1, ω2, respectively. By
inscribed angles (Example 5.2), we have

̸ PAQ = ̸ CAP =
1

2
ÃBω and ̸ PQB = ̸ CBP =

1

2
ÃBω

Let 1
2 ÃBω = θ. Now, ̸ ACB = 180◦ − 2θ. However, ̸ AQB = 2θ, so CAQB is cyclic.

A BP

C

O
Q

X

Y

Furthermore, we can note that ̸ AOB = ÃBω = 2θ, so O is also on this circle, and CO must
be a diameter.

Thus, we can note that ̸ OQP = 90◦, which actually says that Q is the midpoint of chord
XY !
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This is enough for us to finish the problem with power of a point, but we will also note a
different approach.

This time, we draw in the centers O1, O2 of ω1, ω2. We know that A,O1, O are colinear, due
to our tangents properties. Likewise, B,O2, O are colinear.

Next, we note that

ÃPω1
= ÃBω = B̃Pω2

= 2θ.

So, we have that
̸ O1AP = ̸ O1PA = ̸ O2PB = ̸ O2BP = 90◦ − θ.

This is enough to imply that O1PO2O is a parallelogram. So, r1 = O1P = OO2 and
r2 = O2P = OO1. However, as Q is the other intersection of ω1 and ω2, we also have O1Q = r1
and O2Q = r2.

A B
P

O

Q

X

Y

O1

O2

Doesn’t this look familiar? Indeed, we have encountered a similar scenario in Example
5.11. What is important to notice is that O1O2OQ must be an isosceles trapezoid, which forces
OQP = 90◦.

This time, we finish the problem. By Power of a Point on P ,

AP · PB = XP · PY =⇒ 5 · 3 =

Å
11

2
− PQ

ã
·
Å
11

2
+ PQ

ã
So, it turns out that PQ =

√
61/2.

Solution to Problem 5.3.

Our first instincts is probably to use Power of a Point. We obtain

AP ·BP = 10 · (25 + 15) and AQ · CQ = (10 + 25) · 15.
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However, there doesn’t seem like much we can do after. Nevertheless, there is a very nice
coincidence that allows us to continue.

Remember that we derived in Example 5.7 that △ABC ∼ △AQP ∼ △DBP ∼ △DQC?
Indeed, let us extrapolate △AQP ∼ △DBP :

AP

QP
=

DP

BP
=⇒ DP · PQ = AB ·BP.

Very nice! Though we don’t know AP,BP seperately, their product turns out to be useful
enough.

We can do this to obtain PD = 15, QD = 21. Now, one viable strategy may be to look for
PD/CA and QD/BA, so we can obtain AB ·AC. We have

PD

CA
=

BD

BA
and

QD

BA
=

CD

CA
.

Now, these ratios are nicely contained in right triangles. So, if we find another angle cor-
responding to ̸ BAD and ̸ DAC, then we can examine the ratios in those similar triangles.
(Okay, I know that this point we are basically doing trigonometry, please bear with me)

B C

A

D

P

Q

X

Y

H

Luckily, these angles also appear in △PQD. Let H be the orthocenter, and D be the foot
of altitude from A to BC, we know that

90◦ − ̸ B = ̸ BAD = ̸ BCP = ̸ DQH = ̸ PQH

90◦ − ̸ C = ̸ DAC = ̸ CBQ = ̸ DPH = ̸ QPH

So, it turns out that the angle we need is half the angles of △PDQ. So, if we look at △PDQ,
and create some right triangles from I, the incenter, then we should be good.
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16 21

10 15P Q

D

I

X

Currently, we have △PDQ, with side lengths 16, 21, 25. Then, the semiperimeter is s = 31.
We can compute

A =
√
31 · 6 · 10 · 15 = 30

√
31 =⇒ r = A/s =

30√
31

.

Now, let the perpendicular from I to PQ be X. We have

△IQX ∼ △BAD and △IPX ∼ △CAD.

In other words,
BD

BA
=

QI

IX
and

CD

CA
=

PI

IX

Tying everything together, we have

AB ·AC = PD ·QD · QI

IX
· PI

IX

=
16 · 21
900/31

·
…

152 +
900

31
·
…
102 +

900

31

=
16 · 21
900/31

· 10 · 15
31

·
√
31 + 9 ·

√
31 + 4

= 560
√
14

There is also a cleaner way to do this problem, if we find something special about the given
values. We notice that XP +QY = PQ. Could that mean something nice?

What we do is reflect H, the orthocenter, over P,Q to M,N , respectively. We know that
M,N lie on the circumcenter, from Example 5.11. Now, △MHN ∼ △PHQ, with scale factor
2.

So, we now have MN = 2 · 25 = 50. But XY = 50 as well, and the two lines are parallel.
This forces the two chords to be reflections of each other over the center of the circle! Then, we
have that XN,YM are diamaters of the circle.

Now, XB,AQ are both perpendicular to BN , so XB ∥ AQ. Likewise, Y C ∥ AP . This
allows us to form similar triangles. Combined with Power of a Point, we have enough equations
to solve AB,AC directly.

AP ·BP = 10 · (25 + 15) and
AP

BP
=

25

10
.

32



Ideas and Insight in Synthetic Geometry: Solution to Problems 33

P Q

D

A

B

C

X Y

H

M N

AQ · CQ = (10 + 25) · 15 and
AQ

CQ
=

25

15
.

Our final answer is, again,

AB ·AC = 7
√
40 · 8

√
35 = 560

√
14.

Solution to Problem 5.4.

After drawing in XY , it seems like XY might be antiparallel to BC, as we are quite used
to seeing. Indeed, this is the case, and let us prove this. Have XY intersect AB,AC at P,Q,
respectively.

By the tangency condition, we have ̸ QHC = ̸ HBC. Furthurmore, we also have ̸ ABH =
̸ HCQ = 90◦ − ̸ A. Adding the two, we have

̸ B = ̸ ABE + ̸ EBC = ̸ QHC + ̸ HCQ = 180◦ − ̸ HQC = ̸ AQH,

as desired. Thus, we have △APQ ∼ △ACB.

Unfortunately, no more nice angle condition exists for X,Y . (Attempts to find some cyclic
quadrilaterals with X,Y will just not work). Nevertheless, we can still invoke some length
relations to use the information HX = 2, HY = 6.

Power of a Point might be first to come to mind. If we extend AD to meet ⊙ABC at G,
then 2 · 6 = AH ·HG, or HG = 4. Remembering Example 5.11 and reflecting the orthocenter,
we can instead say HD = 2.

Let R be the foot of altitude from A to PQ. We claim that A,R,O are colinear. First, we
need to note that

̸ BAH = 90◦ − ̸ B = ̸ CAO.
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B C

A

H

P

Q

D

E

F

Now, since ̸ ADB = ̸ ARQ = 90◦ and ̸ ABD = ̸ AQR, it follows that ̸ BAD = ̸ QAR.
Hence, ̸ CAO = ̸ CAR.

O

B C

A

H

X

Y

P

Q

D M

R

H ′

This is now useful because R must be the midpoint XY . We know that HR = 2, and
XR = RY = 4. Now, AR =

√
AH2 −HR2 = 5. We can set up an equation for OR to find R,

the circumradius of △ABC.
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OA−AR = OR =
√
OX2 −OR2 =⇒ R−

√
5 =

√
R2 − 42 =⇒ R =

21

2
√
5
.

We know AD, so to find the area of △ABC, we need the base length BC. Fortunately, we
can find OM , the distance from O to BC, where M is the midpoint of BC.

Recall, again from Example 5.11, that we showed the reflection of H over M , H ′ is on
⊙ABC. We also noted that AH ′ is a diameter. Now, we have that △H ′MO ∼ △H ′HA, with
a scale factor of 2. So, OM = AH/2.

That’s enough.

BC = 2
√
R2 −OM2 = 2

√Å
21

2
√
5

ã2
−
Å
3

2

ã2
= 3 ·

…
44

5
.

Our final answer is

[ABC] =
1

2
·AD ·BC = 3

√
55.
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