
The L3 Programming Language

Kevin You

September, 2023

1 About

L3 is an esoteric programming language that originated from the 2023 Carnegie Mel-
lon Informatics and Mathematics Competition’s programming contest. This document
will contain a specification of the L3 programming language and its extension L3X, and
the list of problems from the contest.

2 L3 Language Specifications

2.1 Overview

A L3 program consists of a rectangular grid indexed by (row, column), where each
square contains an operation, or is left blank. An operation contains a natural number
between 1 and 30 and a direction (up, down, left, right). The program state consists of
a variable, which contains a natural number with no prime factors greater than 30, a
position on the rectangular grid, and a direction.

2.2 Execution

On a step of the program, the operation of the square occupied by the variable
manipulates the variable. Let N be the variable’s number, and M the operation’s
number.

• If the variable’s direction is the same as the operation’s, then N is multiplied by
M , and the variable moves one square in the direction of the operation.

• If the variable’s direction is different than the operation’s, and N is divisible by
M , then N is divided by M , and the variable takes the direction of the operation,
and moves one square in this direction.

• If the variable’s direction is different than the operation’s, and N is not divisible
by M , then N is unchanged, and the variable takes the direction opposite to that
of the operation, and moves one square in this direction.

2.3 I/O

Input and output to a L3 program is a natural number with no prime factors greater
than 30. Let the dimensions of the grid be height h and width w. The program begins
with the variable starting at the top-left corner on square (0,0) moving downwards, and



The L3 Programming Language 2

the variable’s initial number is the input. The program terminates when the variable
moves out of the bottom-right square (h-1,w-1) downwards, and the variable’s final
number is the output.

2.4 Errors

The program raises an error if the variable moves out of the grid anywhere not at
the output or onto a blank square, and the program execution is terminated.

3 Coding in L3

An L3 program is formatted as a comma delimited csv file. Within each cell contains
the number followed by the direction as U/D/L/R with no spaces. It is suggested that
one uses a spreadsheet tool to write their code, The dimensions of the csv file should
match the size of the rectangular grid one intends, so the location of the output matches
with what the interpreter expects.

1R 2L 1D

Table 1

1D 1L
1D 3U
1R 2U

Table 2

Shown above are two simple L3 programs. The first example clears the exponent of
2. Given an input N = 2x, its output will be N = 1. The second example transfers
exponent of 2 to 3. Given an input N = 2x, its output will be 3x. Both programs are
correct, but neither are as small as possible.

4 L3X Language Specifications

4.1 Overview.

The L3 language, while being Turing Complete, is ineffective in handling streams of
data, which real-world applications are often built upon. The Extended L3 language,
L3X, aims to solve this issue. In L3X, an operation may consists of a special instruction
— fork, join, or clear — instead of a number. The program state will now contain
multiple variables, and for each join square, a first-in-first-out queues of numbers.

4.2 Execution.

L3X behaves the same as L3 for operations containing a number. Instead, for oper-
ations containing a special instruction, L3X does the following:

• On a fork operation, the variable will be duplicated in two, one of the variables will
take the direction of the fork operation, the other will take the direction opposite
to that of the fork operation, and both variables move one square in their direction.

• On a join operation, if the variable’s direction is the same as the operation’s, the
variable is removed, and its number will be stored in the queue belonging to this
square.



The L3 Programming Language 3

• On a join operation, if the variable’s direction is different than the operation’s, the
first number in the queue belonging to this square will be removed and multiplied
to the current variable, and the current variable will take the direction of the join
operation and move one square.

• On a clear operation, the variable’s number will be set to 1, the variable will take
the direction of the clear operation and move one square.

The L3X language does not limit the number of variables (unlike L3 previously), but
no two variables may occupy the same square simultaneously. Each join operation has
its own queue.

4.3 I/O

Input and output to a L3X program is a natural number (the input number and
output number) and a stream of natural numbers (the input stream and the output
stream).

There are two speical queues, the input queue and the output queue. The input
queue must be placed by the programmer at (0, 1) facing downwards. The input stream
will begin stored in the input queue. The output queue belongs to a hypothetical join
square outside the grid pointing downwards at (h, w-1). Variables moving out of the grid
from (h-1,w-1) will be converted to numbers and stored by this join square to become
the output stream.

The input and output behave identical to that of L3. A L3X program begins with
the input number contained in a variable moving down at (0,0), and terminates when a
variable moves down from (h-1,w-1).

4.4 Errors

In addition to erros of L3, an L3X program may raise an error if two variables occupy
the same square simultaneously, or if a queue is empty when a number is needed.

4.5 Purity

Unlike L3 programs, which are pure functions, L3X programs may retain numbers in
its queues. As standalone programs, purity of L3X programs are not enforced. However,
it is important to be aware of this if a L3X program is used as a sub-component of a
larger program, where the same block of code is reused.

5 Coding in L3X

In L3X, special instructions fork, join, and clear will be written in the symbols %, &,
and ∼, respectively. Otherwise, an L3X program is identical to that of a L3 program.

1R &D 1R 1D
1D %L ∼U 1D
1R 1R 1D 1D

Table 3



The L3 Programming Language 4

Shown above is a simple program that takes input N = 1, input stream [2x], outputs
N = 1 and output stream [2x]. It is worth noting that the number 2x gets stored in the
output queue before the variable containing 1 arrives at the bottom-right. Shown below
is a similar but faulty program, which output stream is empty, since the output arrives
first.

1R &D
1D %L ∼D
1R 1D 1D

Table 4

6 Problems

The desirability of an L3 program, aside from its correctness, is the size of the code.
The area of the rectangle should be as small as possible. The difficulty in L3 to make
it an interesting esoteric language and code golf challange is intended to come from
routing and optimizing the layout of the code. Your task is to implement the following
L30 programs while minimizing the area of code.

Task 1. Implement a L30 program that adds two numbers

Input: 2x3y where x, y are natural numbers
Output: 2z where z = x+ y

Task 2. Implement a L30 program that compares two numbers

Input: 2x3y where x, y are natural numbers
Output: 2 if x > y, 3 if x < y, and 1 if x = y

Task 3. Implement a L30 program that multiplies two numbers

Input: 2x3y where x, y are natural numbers
Output: 2z where z = x× y

Task 4. Implement a L30 program that performs integer division

Input: 2x3y where x, y are natural numbers and y > 0
Output: 2q3r where x = q × y + r and 0 ≤ r < y

Task 5. Implement a L30 program that computes the greatest common divisor

Input: 2x3y where x, y are natural numbers and x, y > 0
Output: 2z where z = gcd(x, y)

Task 6. Implement a L30 program that performs square root

Input: 2x where x is a natural number
Output: 2z where z = ⌊

√
x⌋



The L3 Programming Language 5

7 L30X Problems

Your task is to implement the following L30X programs while minimizing the area
of code. For the sake of the contest, purity of the code is not checked.

Task 7. Implement a L30X program that counts down to output stream

Input: 2n, [] where n is a natural number and n > 0
Output: 1, [2n, 2n−1, . . . , 21]

Task 8. Implement a L30X program that transfers the input stream to the output
stream

Input: 2n, [2x1 , 2x2 , . . . , 2xn ] where n, xi are natural numbers
Output: 2n, [2x1 , 2x2 , . . . , 2xn ]

Task 9. Implement a L30X program that sums up numbers in the input stream

Input: 2n, [2x1 , 2x2 , . . . , 2xn ] where n, xi are natural numbers
Output: 2z, [] where z = x1 + x2 + . . .+ xn

Task 10. Implement a L30X program that finds the max of numbers in the input
stream

Input: 2n, [2x1 , 2x2 , . . . , 2xn ] where n > 0, xi are natural numbers
Output: 2z, [] where z = max(x1, x2, . . . , xn)

Task 11. Implement a L30X program that finds the median of numbers in the input
stream

Input: 2n, [2x1 , 2x2 , . . . , 2xn ] where n > 0 is odd, xi are natural numbers
Output: 2z, [] where z = median(x1, x2, . . . , xn)


